Percorrer por autor "Vaz-Moreira, Ivone"
A mostrar 1 - 10 de 102
Resultados por página
Opções de ordenação
- Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewaterPublication . Vaz-Moreira, Ivone; Novo, Ana; Hantsis-Zacharov, Elionora; Lopes, Ana Rita; Gomila, Margarita; Nunes, Olga C.; Manaia, Célia M.; Halpern, MalkaTwo bacterial strains, G30T and A1PC16, isolated respectively from raw milk and raw wastewater, were characterized using a polyphasic approach. Chemotaxonomic characterization supported the inclusion of these strains in the genus Acinetobacter, with Q-8 and Q-9 as the major respiratory quinones, genomic DNA G+C contents within the range observed for this genus(38–47 mol%) and C16 : 0, C18 : 1v9c and C16 : 1v7c/iso-C15 : 0 2-OH as the predominant fatty acids. The observation of 16S rRNA gene sequence similarity lower than 97% with other Acinetobacter species with validly published names led to the hypothesis that these isolates could represent a novel species. This hypothesis was supported by comparative analysis of partial sequences of the genes rpoB and gyrB, which showed that strains G30T and A1PC16 did not cluster with any species with validly published names, forming a distinct lineage. DNA–DNA hybridizations confirmed that the two strains were members of the same species, which could be distinguished from their congeners by several phenotypic characteristics. On the basis of these arguments, it is proposed that strains G30T and A1PC16 represent a novel species, for which the name Acinetobacter rudis sp. nov. is proposed. The type strain is strain G30T (5LMG 26107T 5CCUG 57889T 5DSM 24031T 5CECT 7818T).
- Advances in industrial and environmental microbiologyPublication . Ciesielski, Slawomir; Vaz-Moreira, Ivone
- AlicycliphilusPublication . Nunes, Olga C.; Manaia, Célia M.; Vaz-Moreira, IvoneAlicycliphilus (A.li.cy.cli'phi.lus. Gr. neut. n. aleiphar annointing oil; Gr. masc. n. kyklos circle or ring; Gr. masc. n. philos friend; N.L. masc. n. Alicyciphilus alicyclic compound liking, referring to the substrates used for the isolation of this organism). Proteobacteria / Betaproteobacteria / Burkholderiales / Comamonadaceae / Alicycliphilus. Short rods, 1–2 μm long and 0.6 μm wide. Motile. Gram‐negative. Nonsporulating. Facultative anaerobe. Nitrate is reduced to N2. Mesophilic, with optimal growth at 28–30°C and pH 7.2–7.4 under aerobic or anoxic conditions. Chemoorganotroph, with strictly respiratory metabolism. Degrade aromatic and alicyclic compounds. Catalase‐ and cytochrome c oxidase‐positive. The respiratory quinone is ubiquinone 8, and major fatty acids are C16:1 ω7c, C16:0, and C18:1 ω7c. Major polar lipids are hosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The type strain of the type species was isolated from a wastewater treatment plant, cultivated with cyclohexanol as sole carbon source and nitrate as electron acceptor. DNA G + C content (mol%): 66 (HPLC) or 67.9 (genome analysis, GenBank). Type species: Alicycliphilus denitrificans Mechichi et al. 2003VP.
- Aminoglycoside resistance in ralstonia pickettiiPublication . Vaz-Moreira, Ivone; Ferro, Pompeyo; Nunes, Olga C.; Manaia, Célia M.
- Analysis of bacterial communities of squid and shrimp skewers after immersion in a red wine vinegar-based solutionPublication . Rezende, Lourenço Pinto de; Barbosa, Joana Bastos; Vaz-Moreira, Ivone; Teixeira, PaulaSeafood is a highly nutritious and essential component of a healthy diet.1 However, due to its perishable nature, seafood products have short shelf lives, leading to high prices and reduced desirability. In order to address this issue, various innovative techniques, such as High Pressure Processing and Ozonation, have been explored to extend the shelf life of seafood. While efficiency of such techniques varies, the cost of their application is usually high, increasing final price or reducing profit margins. Therefore, easier and cheaper, methods such as the pulverization or immersion of the product in antibacterial solutions are gaining popularity.2 To achieve the required bacterial inhibition and maintain an all-natural label, a seafood product, composed mainly of raw squid (Loligo duvauceli) andshrimp (Parapenaeopsis, Penaeus and Metapenaeus genus) was sprayed and immersed in a red wine vinegar-based solution. To perceive the efficiency of the treatment in the inhibition of unwanted spoilage bacteria, analysis of bacterial communities through sequencing of the 16S rRNA gene amplicons with NGS technologies (paired-end Illumina) was performed.
- Antibiotic residues in final effluents of european wastewater treatment plants and their impact on the aquatic environmentPublication . Rodriguez-Mozaz, Sara; Vaz-Moreira, Ivone; Giustina, Saulo Varela Della; Llorca, Marta; Barceló, Damià; Schubert, Sara Schubert; Manaia, Celia M.A comprehensive monitoring of a broad set of antibiotics in the final effluent of wastewater treatment plants (WWTPs) of 7 European countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway) was carried out in two consecutive years (2015 and 2016). This is the first study of this kind performed at an international level. Within the 53 antibiotics monitored 17 were detected at least once in the final effluent of the WWTPs, i.e.: ciprofloxacin, ofloxacin, enrofloxacin, orbifloxacin, azithromycin, clarithromycin, sulfapyridine, sulfamethoxazole, trimethoprim, nalidixic acid, pipemidic acid, oxolinic acid, cefalexin, clindamycin, metronidazole, ampicillin, and tetracycline. The countries exhibiting the highest effluent average concentrations of antibiotics were Ireland and the southern countries Portugal and Spain, whereas the northern countries (Norway, Finland and Germany) and Cyprus exhibited lower total concentration. The antibiotic occurrence data in the final effluents were used for the assessment of their impact on the aquatic environment. Both, environmental predicted no effect concentration (PNEC-ENVs) and the PNECs based on minimal inhibitory concentrations (PNEC-MICs) were considered for the evaluation of the impact on microbial communities in aquatic systems and on the evolution of antibiotic resistance, respectively. Based on this analysis, three compounds, ciprofloxacin, azithromycin and cefalexin are proposed as markers of antibiotic pollution, as they could occasionally pose a risk to the environment. Integrated studies like this are crucial to map the impact of antibiotic pollution and to provide the basis for designing water quality and environmental risk in regular water monitoring programs.
- Antibiotic resistance and organic micropollutants monitoring in municipal full-scale constructed wetlands systemsPublication . Teixeira, A. Margarida; Matos, Diana; Halwatura, Lahiruni M.; Aga, Diana S.; Vaz-Moreira, Ivone; Castro, Paula M. L.; Manaia, Célia M.
- Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking waterPublication . Faria, Cátia; Vaz-Moreira, Ivone; Serapicos, Eduarda; Manaia, Célia M.This study reports the antibiotic resistance patterns of coagulase negative staphylococci (CNS) isolated from a drinking water treatment plant (WTP), a drinking water distribution network, responsible for supplying water to the consumers (WDN), and a wastewater treatment plant (WWTP), responsible for receiving and treating domestic residual effluents. Genotyping and the 16S rRNA gene sequence analysis demonstrated a higher diversity of species both in the WTP (6 species/19 isolates) and WWTP (12 species/47 isolates) than in the WDN (6 species/172 isolates). Staphylococcus pasteuri and Staphylococcus epidermidis prevailed in the WTP and WDN and Staphylococcus saprophyticus in the WWTP. Staphylococci with reduced susceptibility (resistance or intermediary phenotype) to beta-lactams, tetracycline, clindamycin and erythromycin were observed in all types of water and belonged to the three major species groups. The highest resistance rate was found against erythromycin, presumably due to the presence of the efflux pump encoded by the determinant msrA, detected in the majority of the resistant isolates. This study demonstrates that antibiotic resistant CNS may colonize different types of water, namely drinking water fulfilling all the quality standards.
- Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalencePublication . Pärnänen, Katariina M. M.; Narciso-da-Rocha, Carlos; Kneis, David; Berendonk, Thomas U.; Cacace, Damiano; Do, Thi Thuy; Elpers, Christian; Fatta-Kassinos, Despo; Henriques, Isabel; Jaeger, Thomas; Karkman, Antti; Martinez, Jose Luis; Michael, Stella G.; Michael-Kordatou, Irene; O’Sullivan, Kristin; Rodriguez-Mozaz, Sara; Schwartz, Thomas; Sheng, Hongjie; Sørum, Henning; Stedtfeld, Robert D.; Tiedje, James M.; Giustina, Saulo Varela Della; Walsh, Fiona; Vaz-Moreira, Ivone; Virta, Marko; Manaia, Célia M.Integrated antibiotic resistance (AR) surveillance is one of the objectives of the World Health Organization global action plan on antimicrobial resistance. Urban wastewater treatment plants (UWTPs) are among the most important receptors and sources of environmental AR. On the basis of the consistent observation of an increasing north-to-south clinical AR prevalence in Europe, this study compared the influent and final effluent of 12 UWTPs located in seven countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway). Using highly parallel quantitative polymerase chain reaction, we analyzed 229 resistance genes and 25 mobile genetic elements. This first trans-Europe surveillance showed that UWTP AR profiles mirror the AR gradient observed in clinics. Antibiotic use, environmental temperature, and UWTP size were important factors related with resistance persistence and spread in the environment. These results highlight the need to implement regular surveillance and control measures, which may need to be appropriate for the geographic regions.
- Antibiotic resistance in waste water and surface water and human health implicationsPublication . Manaia, C. M.; Vaz-Moreira, Ivone; Nunes, Olga C.The utilization of antibiotics to control infectious diseases is one of the biggest advances in human and veterinary health care. However, the generalized use of antibiotics has been accompanied by a worrisome increase in the prevalence of antibiotic-resistant bacteria. This evidence motivated numerous studies on the diversity and distribution of antibiotic-resistant bacteria and resistance genetic determinants not only in clinic but also in different environmental compartments. Given the particular importance that the anthropic water cycle (waste water/surface water/drinking water) may have in the development and dissemination of antibioticresistant organisms, this chapter aims at summarizing the recent advances in this area. Sections 1 and 2 are an Introduction to antibiotic resistance, summarizing some mechanisms and modes of resistance acquisition. In Sect. 3, the contribution of the environmental pollution and other anthropic pressures for antibiotic resistance evolution is discussed. The use of different methodologies and the limitations to achieve general conclusions on the characterization and quantification of antibiotic resistance in aquatic environments are examined in Sects. 4 and 7. Sections 5–7 summarize recent evidences on the widespread distribution of antibiotic resistance in different compartments of the anthropic water cycle. The scarcity of studies giving evidences on the direct effect of anthropic pressures on antibiotic resistance acquisition and maintenance in treated waste/drinking waters is highlighted. The contribution of bacterial community rearrangement, imposed by water treatment processes, on the increase of antibiotic resistance is discussed.
