Browsing by Author "Ghalamara, Soudabeh"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Characterization of tomato and winery by-productsPublication . Ghalamara, Soudabeh; Silva, Sara; Pintado, Manuela
- Exploring fish processing by-products as an alternative source of bioactive peptides: a review on extraction and food applicationsPublication . Ghalamara, Soudabeh; Brazinha, Carla; Silva, Sara; Pintado, ManuelaPurpose of Review This review explores non-thermal-based extraction techniques for obtaining bioactive peptides from fsh processing by-products. It emphasizes the potential of these peptides as alternatives in the development of functional foods. With a focus on preserving bioactivity, the review aims to explore the utilization of fsh peptides in food applications. Recent Findings Recent research highlights the potential of bioactive peptides in the food, pharmaceutical, and cosmetic industries. Fish processing by-products are valuable sources of these peptides. Non-thermal technologies preserve their bioactivity, while encapsulation techniques further enhance peptide protection and efcacy in industrial applications. Summary This review highlights fsh processing by-products as a source of bioactive peptides, with non-thermal extraction techniques preserving their bioactivity. It emphasizes their promising bioactivities for industrial use and the importance of encapsulation techniques in maintaining bioactivity. It provides comprehensive insights into their extraction, bioavailability, safety considerations, and food applications.
- Functional proteins and peptides obtained from fish by-productsPublication . Ghalamara, Soudabeh; Pintado, Maria Manuela Estevez; Silva, Sara Nunes da Costa e; Ferreira, Carla Maria Carvalho Gil Brazinha de BarrosMarine processing industries face significant challenges due to excessive by-products, which contribute to both environmental and economic issues. By-products from fish processing, which can constitute between 30% and 70% of the fish's total weight, exacerbate these challenges. Activities like washing, thawing, cooking, and fishmeal production generate more wastewater, intensifying the industry's environmental impact. This research explored using fish by-products like sardine cooking effluent and codfish bloodwater (CFBW) in a sustainable, zero-waste approach. The functional proteins and peptides extracted from fish by-products enhanced their value. The research evaluated their properties and potential food uses, aligning with circular bioeconomy principles. Fish by-products were fractionated using membrane technology at laboratory and pilot scales, aligning with zero-waste and biorefinery approaches. Ultrafiltration (UF) membranes were used to extract bioactive peptide-enriched fractions from sardine cooking effluent and CFBW at the laboratory scale. The process involved analyzing the selective permeation of small peptides (<1 kDa) using different membranes. The membranes effectively rejected (>10 kDa) of proteins and peptides but had relatively low rejection of <1 kDa peptides, with UP010 from CFBW achieving a 2% rejection rate and GH from sardine cooking effluent operating at minimum pressure (1 bar) achieving a 23% rejection rate. Peptides from CFBW using MW and UP010 membranes demonstrated potent antioxidant activity (high ABTS+ and ORAC values). However, the peptide fractions from sardine cooking effluent using the GH membrane did not enhance antioxidant activity. Nevertheless, the peptide fractions from CFBW (UP010 membrane) and sardine cooking effluent (GH membrane, 1 bar pressure) inhibited E. coli growth. Peptide-enriched fractions from CFBW were successfully obtained using a pilot-scale process involving microfiltration (MF), UF, and reverse osmosis (RO). The process aimed to fractionate CFBW into protein- and peptide-rich fractions. Chemical and biological characterization revealed that CFBW and pretreated CFBW consisted primarily of proteins and peptides. UF membrane fractions had lower protein content but higher ash levels. The UF retentate with a MWCO of 50 kDa, followed by RO, displayed the highest antioxidant values, indicating the presence of potent antioxidants. Additionally, the UF permeate obtained with a MWCO of 50 kDa from the MF-PFG showed antimicrobial activity against E. coli. A pilot-scale integrated membrane process was developed to obtain protein- and peptiderich fractions from sardine cooking effluent. The process used UF, nanofiltration (NF), and RO combined with enzymatic hydrolysis. Specifically, the RO retentate fractions of NF retentate were derived from diluted sardine cooking effluent, diluted hydrolyzed UF retentate, and diluted non-hydrolyzed UF retentate. The process involved UF, nanofiltration (NF), and RO combined with enzymatic hydrolysis. Specifically, the RO retentate fractions of NF retentate fractions were derived from water-diluted sardine cooking effluent (sardine cooking effluent-NF-RO), water-diluted UF retentate hydrolyzed (UF-H-NF-RO), and water-diluted UF retentate non-hydrolyzed (UF-NH-NF-RO). UF-H-NF-RO showed enhanced antioxidant and antimicrobial activities. The UF-NH-NF-RO peptide fraction displayed significantly enhanced functional properties in terms of WHC, FBC, emulsifying properties, and foaming properties at pH 4. In vitro digestion analysis showed this fraction also had the highest antioxidant activity, and none of the fractions exhibited cytotoxicity. Finally, foamy fish sauces (FFSs) were developed and evaluated using protein/peptide and lipofish fractions obtained from centrifugation of sardine cooking effluent. The control sample (CS) used a butter-based sauce emulsified with lecithin. An alternative lipofish sauce (LS) substituted unsalted butter with fish oil and included lecithin as the emulsifier. Three other formulas, namely lipofish-sardine cooking effluent-NF-RO-sauce (LSS), lipofish-UFH-NF-RO-sauce (LHS), and lipofish-UF-NH-NF-RO-sauce (LNHS), replaced unsalted butter with fish oil and incorporated a combination of protein/peptide fractions and lecithin. Despite minor physicochemical differences, the sauce formulas showed improvements compared to the control, including enhanced fatty acid (FA) content and profile, slightly reduced viscosity, improved foaming capacity, and enhanced foam stability. In vitro digestion analysis demonstrated high recovery of FAs, with the formula LNHS exhibiting the highest efficacy in scavenging ABTS radicals, indicating strong antioxidant properties. Furthermore, the FFS received remarkable acceptance from the trained panelists, who highly praised its texture, aroma, color, and flavor. This study's findings on fish by-products have significant implications for sustainable development in the fish processing industry. The research showcased the potential to obtain functional ingredients through eco-friendly strategies, preserving their bioactivity. These outcomes promote responsible and sustainable fish processing, reducing waste and maximizing by-product utilization.
- Innovation and winemaking by-product valorization: an ohmic heating approachPublication . Coelho, Marta C.; Ghalamara, Soudabeh; Pereira, Ricardo; Rodrigues, António S.; Teixeira, José A.; Pintado, Manuela E.The by-products of the winemaking process can represent chances for the development of new products. This study focused on the “zero waste” strategy development for by-products generated within winemaking from white and red grape varieties cultivated in the north of Portugal. The phytochemical properties of by-products were identified and characterized. Ohmic heating (OH) as a green extraction method was also applied to grape pomace due to their unknown effects on centesimal and phytochemical compositions. Both protein and carbohydrates were shown to be higher in grape bagasse than in stems. Additionally, red bagasse is richer in bioactive compounds (BC) than white bagasse. The sugar content was 21.91 and 11.01 g/100 g of DW in red and white grape bagasse, respectively. The amount of protein was 12.46 g/100 g of DW for red grape bagasse and 13.18 g/100 g of DW for white. Regarding the extraction methods, two fractions were obtained, a liquid fraction and solid (the remainder after the methodology application). OH presented a higher antioxidant capacity than a conventional (CONV) method. In addition, both extracts presented similar contents of anthocyanins, e.g., delphinidin-3-O-glucoside, petunidin-3-O-glucoside, and peonidin-3-O-glucoside. The solid fraction presented higher amounts of protein and phenols bound to fiber than CONV, which allows its use as a functional ingredient. In conclusion, OH can be an alternative extraction method compared with CONV methods, avoiding non-food grade solvents, thus contributing to circular economy implementation.
- Integrated ultrafiltration, nanofiltration, and reverse osmosis pilot process to produce bioactive protein/peptide fractions from sardine cooking effluentPublication . Ghalamara, Soudabeh; Coscueta, Ezequiel R.; Silva, Sara; Brazinha, Carla; Pereira, Carlos D. Pereira; Pintado, Manuela E.Sardine cooking effluents contain a high level of organic matter, such as proteins and lipids, which allows them to be forward into a chain exploiting high added-value compounds attained from these effluents, increasing their economic value while reducing their environmental effect. Thus, the purpose of this work was to develop an innovative pilot-scale integrated membrane process, with or without enzymatic hydrolysis, to obtain fractions with high protein/peptide and low NaCl contents, as well as optimized bioactive properties. The research strategy followed involved the use of ultrafiltration (UF) and nanofiltration (NF) technologies of the pretreated sardine cooking effluent followed by reverse osmosis (RO) at a pilot scale levels. Moreover, it allowed for the attainment of fractions rich in protein/peptides that might be used in the food, pharmaceutical, or cosmetic industries, particularly after RO, as they present a lower NaCl content. The RO retentate (hydrolyzed sample) coupled with UF and NF resulted in the fractions with the best bioactive properties (higher antioxidant capacity and antimicrobial activity) of all the analyzed samples. Overall, the current work demonstrated the feasibility of exploiting liquid by-products as a source of functional components as well as reinforcing this strategy’s potential relevance in future effective management strategies for this type of effluents.
- Proteins and peptides extraction from fish by-productsPublication . Ghalamara, Soudabeh; Silva, Sara; Pintado, Manuela; Brazinha, Carla
- Structural diversity of marine anti-freezing proteins, properties and potential applications: a reviewPublication . Ghalamara, Soudabeh; Silva, Sara; Brazinha, Carla; Pintado, ManuelaCold-adapted organisms, such as fishes, insects, plants and bacteria produce a group of proteins known as antifreeze proteins (AFPs). The specific functions of AFPs, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), dynamic ice shaping (DIS) and interaction with membranes, attracted significant interest for their incorporation into commercial products. AFPs represent their effects by lowering the water freezing point as well as preventing the growth of ice crystals and recrystallization during frozen storage. The potential of AFPs to modify ice growth results in ice crystal stabilizing over a defined temperature range and inhibiting ice recrystallization, which could minimize drip loss during thawing, improve the quality and increase the shelf-life of frozen products. Most cryopreservation studies using marine-derived AFPs have shown that the addition of AFPs can increase post-thaw viability. Nevertheless, the reduced availability of bulk proteins and the need of biotechnological techniques for industrial production, limit the possible usage in foods. Despite all these drawbacks, relatively small concentrations are enough to show activity, which suggests AFPs as potential food additives in the future. The present work aims to review the results of numerous investigations on marine-derived AFPs and discuss their structure, function, physicochemical properties, purification and potential applications.
- Tomato processing by-products valorisation through ohmic heating approachPublication . Coelho, Marta C.; Ghalamara, Soudabeh; Campos, Débora; Ribeiro, Tânia Bragança; Pereira, Ricardo; Rodrigues, António S.; Teixeira, José A.; Pintado, ManuelaTomato by-products from processing industries have a higher potential to be reused as a source of bioactive compounds. Reliable national data on tomato by-products and physicochemical characterisation that will inform and find effective planning on tomato waste management in Portugal is absent. To help obtain this knowledge, selected Portugal companies were recruited to obtain representative samples of by-products generation, and physicochemical composition was evaluated. Furthermore, an environmental-friendly method (the ohmic heating (OH) method, which allows the recovery of bioactive compounds in absence of hazardous reagents) was also used and compared with conventional methods to explore new safe value-added ingredients. Total antioxidant capacity and total and individual phenolic compounds were also evaluated by spectrophotometric and high-performance liquid chromatography (HPLC), respectively. Tomato processing by-products have revealed a higher potential since both collected samples from companies were rich in protein (between 16.3 to 19.4 g/100 g DW, with fibre content ranging from 57.8 to 59.0 g/100 g DW). In addition, these samples contain 17.0 g/100 g of fatty acids (mainly polyunsaturated, monounsaturated and saturated, such as linoleic, oleic, and palmitic acid, respectively). Also, they present mainly chlorogenic acid and rutin as phenolic compounds. After understanding its composition, the OH was applied to determine added-value solutions to tomato by-products. With extractions, two types of fractions were obtained, namely liquid fraction rich in phenols, free sugars, and carotenoids and a solid fraction rich in fibre bound to phenols and carotenoids. This treatment has been shown to have the ability to preserve carotenoids, such as lycopene relative to conventional methods. Nevertheless, new molecules were identified by LC-ESI-UHR-OqTOF-MS analysis, such as phene-di-hexane and N-acethyl-D-tryptophan. According to the results, the OH boosts the potential of tomato by-products and can be directly introduced into the process, contributing to the circular economy and zero by-products.
- Valorization of Fish by-products: purification of bioactive peptides from codfish blood and sardine cooking wastewaters by membrane processingPublication . Ghalamara, Soudabeh; Silva, Sara; Brazinha, Carla; Pintado, Manuela
- Valorization of fish processing by-products: biological and functional properties of bioactive peptidesPublication . Ghalamara, Soudabeh; Brazinha, Carla; Silva, Sara; Pintado, ManuelaPurpose of Review: This review explores the potential of fish by-products as a source of bioactive peptides for the food, pharmaceutical, and cosmetic industries. Focusing on their diverse bioactive and functional properties, it offers insights into their industrial utilization, contributing to a better understanding of their applications.Recent FindingsFish processing by-products, including wastewater and solid residues, serve as valuable sources of bioactive peptides exhibiting a remarkable range of biological activities, such as antioxidant, antimicrobial, and antihypertensive properties. These peptides exhibit a wide range of functional properties, such as solubility, water holding, fat binding, foaming, and emulsifying capacities. Moreover, they show significant potential for various industrial applications.SummaryBioactive peptides derived from fish by-products are attracting interest in multiple industries due to their diverse biological activities and functional properties. These peptides have emerged as a valuable and largely untapped resource, as they can be extracted from underutilized, or waste materials generated during fish processing operations.