Browsing by Author "Oliveira, Carla Maria"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Influence of the temperature and oxygen exposure in red Port wine: a kinetic approachPublication . Oliveira, Carla Maria; Barros, António S.; Ferreira, António César Silva; Silva, Artur M. S.Although phenolics are recognized to be related with health benefits by limiting lipid oxidation, in wine, they are the primary substrates for oxidation resulting in the quinone by-products with the participation of transition metal ions. Nevertheless, high quality Port wines require a period of aging in either bottle or barrels. During this time, a modification of sensory properties of wines such as the decrease of astringency or the stabilization of color is recognized to phenolic compounds, mainly attributed to anthocyanins and derived pigments. The present work aims to illustrate the oxidation of red Port wine based on its phenolic composition by the effect of both thermal and oxygen exposures. A kinetic approach toanthocyanins degradation was also achieved. For this purpose a forced red Port wine aging protocol was performed at four different storage temperatures, respectively, 20, 30, 35 and 40 degrees C, and two adjusted oxygen saturation levels, no oxygen addition (treatment I), and oxygen addition (treatment II). Three hydroxycinnamic esters, three hydroxycinnamic acids, three hydroxybenzoic acids, two flavan-3-ols, and six anthocyanins were quantitated weekly during 63 days, along with oxygen consumption. The most relevant phenolic oxidation markers were anthocyanins and catechin-type flavonoids, which had the highest decreases during the thermal and oxidative red Port wine process. Both temperature and oxygen treatments affected the rate of phenolic degradation. In addition, temperature seems to influence mostly the phenolics kinetic degradation.
- Oxidation mechanisms occurring in winesPublication . Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor de; Silva, Artur M. S.The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and para-coumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, also called chemical oxidation of wine, prevails in fermented wine and begin by the oxidation of polyphenols containing a catechol or a galloyl group. These phenolic. reactions, both enzymatic and non-enzymatic, result in by-products named quinones. However, in non-enzymatic oxidation, oxygen does not react directly with phenolic compounds. The limitation on the reactivity of triplet oxygen is overcome by the stepwise addition of a single electron, which can be provided by reduced transition metal ions, essentially iron(II) and copper(I). The sequential electron transfer leads to the formation of hydroperoxide radical (HOO center dot), hydrogen peroxide (H2O2), and hydroxyl radical (HO center dot). The later radical will oxidize almost any organic molecule found in wine and will react with the first species it encounters, depending on their concentration. Sulfur dioxide (SO2) and ascorbic acid, when added to wine, are able to reduce the quinones. Alternative options have been assessed for the prevention of oxidation during wine storage; nevertheless, these are not fully understood or commonly accepted. During aging, aldehydes are important intermediates in the chemical transformations occurring in wines, leading to color and flavor changes. In the same way, a range of off-flavors can be formed from wine oxidation. At low concentrations these flavors may add to the complexity of a wine, but as these increase they begin to detract from wine quality. In addition to the major chemical browning involving wine phenols, the main oxidation reactions occurring during grape juice heating or storage are caramelization and Maillard reaction, which are temperature dependent. Different methods have been proposed in the literature, addressing the complexity and multi-scale related with the oxidation process, to attempt the quantification of antioxidant activity in wines. These methods can be broadly divided in: i) methods based on chemical reactions and ii) methods based on the chemical-physical properties of antioxidants.
- Phenolic compounds in wine: primary substrates for oxidationPublication . Oliveira, Carla Maria; Silva, Artur M. S.; Barros, António S.; Silva Ferreira, António César
- Quinones as Strecker degradation reagents in wine oxidation processesPublication . Oliveira, Carla Maria; Santos, Sónia A. O.; Silvestre, Armando J. D.; Barros, António S.; Ferreira, António César Silva; Silva, Artur M. S.The Strecker aldehydes formed during the reaction between α-amino acids (phenylalanine or methionine) and either gallic acid, caffeic acid or (+)-catechin ortho-quinones were evaluated in wine-model systems. It was demonstrated that phenylacetaldehyde was formed by quinone intermediates at wine pH. The highest amounts of phenylacetaldehyde during the 10days of experiment (69±5µg/L/day; 7x>Control) were obtained from (+) catechin, followed by gallic acid (61±4µg/L/day; 6x>Control) and caffeic acid (41±4µg/L/day; 4x>Control). The intermediate structures delivered from the reaction of ortho-quinones with α-amino acids were demonstrated by MSn.
- Saccharomyces cerevisiae oxidative response by cyclic voltammetry and GC-MSPublication . Oliveira, Carla Maria; Castro, Cristiana C.; Gunning, Caitriona; Couto, José A.; Teixeira, José A.; Martins, Rui C.; Silva Ferreira, António César
- Spent yeast valorization for food applications: effect of different extraction methodologiesPublication . Oliveira, Ana Sofia; Pereira, Joana Odila; Ferreira, Carlos; Faustino, Margarida; Durão, Joana; Pereira, Ana Margarida; Oliveira, Carla Maria; Pintado, Manuela E.; Carvalho, Ana P.Over the years, synthetic biology has been growing with the use of engineered yeast strains for the production of sustainable ingredients to meet global healthcare, agriculture, manufacturing and environmental challenges. However, as seen from the brewing industry perspective, these processes generate a substantial amount of spent yeast that contains high nutritional value related to its high protein content, showing its potential to be used as an alternative protein source. Taking into account the rising demand for protein because of the growth in the global population, the present study aims to produce peptide-rich extracts by different potentially scalable and sustainable methodologies in a circular economy approach for the food and nutraceutical industries. The results demonstrated that extraction from genetically modified strains allowed the production of extracts with an excellent nutritional profile and low molecular weight peptides. Furthermore, autolysis was shown to be a potential sustainable approach for this production, though other green metrics need to be explored in order to establish this process at an industrial level.
- Valorization of spent sugarcane fermentation broth as a source of phenolic compoundsPublication . Oliveira, Carla Maria; Horta, Bruno; Leal, Tânia; Pintado, Manuela; Oliveira, Catarina S. S.A methodology based on a solid phase extraction (SPE) was optimized for the recovery of phenolic compounds from the spent fermentation broth generated from Biofene® (trans-β-farnesene) production. For this purpose, two resins (XAD-2 and HP-20) and three desorption solutions (water, 50/50 ethanol/water, and ethanol) were tested. The most efficient resin revealed to be the HP-20, using ethanol as desorption solution, reaching an overall total phenolic compound recovery of ca. 80% when 6 BV (bed volume) of both feed and ethanol were applied. The optimization of the resin’s process cycle pointed to 15 BV feed to be treated per cycle and using the same volume of ethanol in the desorption step, with no need for an extra resin regeneration step, stably yielding 48% total phenolic compound recovery from the spent broth for at least 4 cycles, translating into 60 BV of feed being treated per BV of resin, and with the resin being still perfectly active. The extract was characterized using LC−ESI−UHR−QqTOF−MS, and a total of 82 and 15 compounds were identified, in negative and positive ionization modes, respectively. Organic acids were the main class of compounds identified in the phenolic-rich extract, followed by phenolic compounds, saccharides, peptides or amino acids and vitamins. Additionally, the extract revealed a significant antioxidant capacity (914.1 ± 51.6 and 2764.5 ± 142.8 µmol Trolox equivalents/g-dw, respectively, with ABTS and ORAC methodologies), which might be interesting for a wide variety of applications.
- Wine oxidation profile accessed by voltammetric, antioxidant scavenging and GC-MS techniquesPublication . Oliveira, Carla Maria; Silva, Artur M. S.; Barros, António S.; Silva Ferreira, António César
