Loading...
23 results
Search Results
Now showing 1 - 10 of 23
- Biological treatment of a contaminated gaseous emission from a leather industry in a suspended-growth bioreactorPublication . Carvalho, M. F.; Duque, A. F.; Moura, S. C.; Amorim, Catarina L.; Ferreira Jorge, R. M.; Castro, Paula M. L.A suspended-growth bioreactor (SGB) was operated for the treatment of a gaseous stream mimicking emissions generated at a leather industrial company. The main volatile organic compounds (VOCs) present in the gaseous stream consisted of 1-methoxy-2-propanol, 2,6-dimethyl-4-heptanone, 2-butoxyethanol, toluene and butylacetate. A microbial consortium able to degrade these VOCs was successfully enriched. A laboratory- scale SGB was established and operated for 210-d with an 8 h cycle period and with shutdowns at weekends. Along this period, the SGB was exposed to organic loads (OL) between 6.5 and 2.3 £ 102 g h¡1 m¡3. Most of the compounds were not detected at the outlet of the SGB. The highest total VOC removal efficiency (RE) (ca 99%) was observed when an OL of 1.6 £ 102 g h¡1 m¡3 was fed to the SGB. The maximum total VOC elimination capacity (1.8 £ 102 g h¡1 m¡3) was achieved when the OL applied to the SGB was 2.3 £ 102 g h¡1 m¡3. For all the operating conditions, the SGB showed high levels of degradation of toluene and butylacetate (RE t 100%). This study also revealed that recirculation of the gaseous effluent improved the performance of the SGB. Overall, the SGB was shown to be robust, showing high performance after night and weekend shutdown periods.
- Degradation of fluoroanilines by the wild strain Labrys portucalensisPublication . Amorim, Catarina L.; Carvalho, Maria F.; Afonso, Carlos M. M.; Castro, Paula M. L.Aromatic amine compounds, many of them with halogenated substituents, constitute a major class of environmental pollutants that have been released into soil and water due to extensive use in industries and agriculture. Biodegradation has been found to be a major route for the removal of this kind of toxic and recalcitrant pollutants from the environment. Whereas the degradation of mono- and dichlorinated anilines has been studied, very little is known about fluorinated anilines. Therefore, the objective of this study was to investigate, under aerobic conditions, the degradation of 2-, 3- and 4-fluoroaniline by a previously isolated pure bacterium, designated as strain F11. This microorganism, identified as Labrys portucalensis, was isolated from a contaminated site in northern Portugal and has the unique capacity to utilize fluorobenzene as a sole carbon and energy source,. The results of the biodegradation of 2-, 3- and 4-fluoroaniline by strain F11 showed that this microorganism is able to completely degrade 2- fluoroaniline and partially degrade 4-fluoroaniline, when these compounds are present as a sole carbon and energy source. Biodegradation of these two compounds also occurred, although at a lower rate, in the absence of an external nitrogen source in the culture medium. To our knowledge, this is the first study reporting the biodegradation of 2- and 4-fluoroaniline as a sole carbon and energy source by a pure microbial culture. C.L. Amorim and M.F. Carvalho wish to acknowledge a research grant from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/47109/2008 and SFRH/BPD/44670/2008, respectively) and Fundo Social Europeu (III Quadro Comunitário de Apoio). This work was supported by the FCT Project - PTDC/BIO/67306/2006
- Biodegradation of 2-fluorobenzoate and dichloromethane under simultaneous and sequential alternating pollutant feedingPublication . Osuna, M. Begoña; Sipma, Jan; Emanuelsson, Maria A. E.; Carvalho, M. Fátima; Castro, Paula M. L.Two up-flow fixed-bed reactors (UFBRs), inoculated with activated sludge and operated for 162 days,were fed 1 mmol Lˉ¹ dˉ¹ with twomodel halogenated compounds, 2-fluorobenzoate (2-FB) and dichloromethane (DCM). Expanded clay (EC) and granular activated carbon (GAC)were used as biofilm carrier. EC did not have any adsorption capacity for both model compounds tested, whereas GAC could adsorb 1.3 mmol gˉ¹ GAC for 2-FB and 4.5mmol gˉ¹ GAC for DCM. Both pollutants were degraded in both reactors under simultaneous feeding. However, biodegradation in the EC reactor was more pronounced, and re-inoculation of the GAC reactorwas required to initiate 2-FB degradation. Imposing sequential alternating pollutant (SAP) feeding caused starvation periods in the EC reactor, requiring time-consuming recovery of 2-FB biodegradation after resuming its feeding, whereas DCMdegradation recovered significantly faster. The SAP feeding did not affect performance in the GAC reactor as biodegradation of both pollutants was continuously observed during SAP feeding, indicating the absence of true starvation.
- Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sedimentsPublication . Pires, Carlos; Carvalho, Maria F.; Marco, Paolo De; Magan, Naresh; Castro, Paula M. L.Two Gram-staining-negative bacterial strains, designated 3A10T and ECP37T, were isolated from sediment samples collected from an industrially contaminated site in northern Portugal. These two organisms were rod-shaped, non-motile, aerobic, catalase- and oxidase-positive and formed yellow colonies. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 1{omega}9c and iso-C17 : 0 3-OH. The G+C content of the DNA of strains 3A10T and ECP37T was 43 and 34 mol%, respectively. The major isoprenoid quinone of the two strains was MK-6. 16S rRNA gene sequence analysis revealed that strains 3A10T and ECP37T were members of the family Flavobacteriaceae and were related phylogenetically to the genus Chryseobacterium. Strain 3A10T showed 16S rRNA gene sequence similarity values of 97.2 and 96.6 % to the type strains of Chryseobacterium antarcticum and Chryseobacterium jeonii, respectively; strain ECP37T showed 97.3 % similarity to the type strain of Chryseobacterium marinum. DNA–DNA hybridization experiments revealed levels of genomic relatedness of <70 % between strains 3A10T and ECP37T and between these two strains and the type strains of C. marinum, C. antarcticum and C. jeonii, justifying their classification as representing two novel species of the genus Chryseobacterium. The names proposed for these organisms are Chryseobacterium palustre sp. nov. (type strain 3A10T =LMG 24685T =NBRC 104928T) and Chryseobacterium humi sp. nov. (type strain ECP37T =LMG 24684T =NBRC 104927T).
- Biodegradation of water emerging pharmaceutical contaminants by two microbial consortia from different originsPublication . Carvalho, M.F.; Ribeiro, A.R.; Gonçalves, V.; Maia, A.; Maranhão, C.; Soares, M.T.; Tiritan, M.E.; Castro, Paula M. L.
- Isolation and characterization of a Rhodococcus strain able to degrade 2-fluorophenolPublication . Duque, Anouk F.; Hasan, Syed A.; Bessa, Vânia S.; Carvalho, Maria F.; Samin, Ghufrana; Janssen, Dick B.; Castro, Paula M. L.A pure bacterial culture able to utilize 2- fluorophenol (2-FP) as sole carbon and energy source was isolated by selective enrichment from sediments collected from a contaminated site in Northern Portugal. 16S rRNA gene analysis showed that the organism (strain FP1) belongs to the genus Rhodococcus. When grown aerobically on 2-FP, growth kinetics of strain FP1 followed the Luong model. An inhibitory effect of increasing 2-FP concentrations was observed with no growth occurring at 2- FP levels higher than ca. 4 mM. Rhodococcus strain FP1 was able to degrade a range of other organofluorine compounds, including 2-fluorobenzoate, 3-fluorobenzoate, 4-fluorobenzoate, 3-fluorophenol, 4-fluorophenol, 3-fluorocatechol, and 4-fluorocatechol, as well as chlorinated compounds such as 2-chlorophenol and 4-chlorophenol. Experiments with cell-free extracts and partially purified enzymes indicated that the first step of 2-fluorophenol metabolism was conversion to 3-fluorocatechol, suggesting an unusual pathway for fluoroaromatic metabolism. To our knowledge, this is the first time that utilization of 2-FP as a growth substrate by a pure bacterial culture is reported.
- Labrys portucalensis, a bacterial strain with the capacity to degrade fluorobenzenePublication . Carvalho, M.F.; de Marco, P.; Duque, A.F.; Pacheco, C.C.; Janssen, D.B.; Castro, Paula M. L.
- Bioaugmentation of a rotating biological contactor for degradation of 2-fluorophenolPublication . Duque, Anouk F.; Bessa, Vânia S.; Carvalho, Maria F.; Castro, Paula M. L.The performance of a laboratory scale rotating biological contactor (RBC) towards shock loadings of 2-fluorophenol (2-FP) was investigated. During a period of ca. 2 months organic shock loadings of 25 mg L-1 of 2-FP were applied to the RBC. As no biodegradation of 2-FP was observed, bioaugmentation of the RBC with a 2-FP degrading strain was carried out and, along ca. 6 months, organic shock loadings within a range of 25-200 mg L-1 of 2-FP were applied. Complete biodegradation of 50 mg L-1 of 2-FP was observed during operation of the reactor. The RBC showed to be robust towards starvation periods, as after ca. 1 month of non-supply of the target compound, the reactor resumed 2-FP degradation. The inoculated strain was retained within the biofilm in the disks, as the 2-FP degrading strain was recovered from the biofilm by the end of the experiment, thus bioaugmentation was successfully achieved.
- Biodegradation of the fluorinated antibiotic moxifloxacinPublication . Carvalho, Maria F.; Maia, Alexandra; Tiritan, Maria E.; Castro, Paula M. L.
- 2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactorPublication . Duque, Anouk F.; Bessa, Vânia S.; Carvalho, Maria F.; Kreuk, Merle K. de; Loosdrecht, Mark C. M. van; Castro, Paula M. L.Aerobic granular sludge is extremely promising for the treatment of effluents containing toxic compounds, and it can economically compete with conventional activated sludge systems. A laboratory scale granular sequencing batch reactor (SBR) was established and operated during 444 days for the treatment of an aqueous stream containing a toxic compound, 2-fluorophenol (2-FP), in successive phases. Initially during ca. 3 months, the SBR was intermittently fed with 0.22 mM of 2-FP added to an acetate containing medium. No biodegradation of the target compound was observed. Bioaugmentation with a specialized bacterial strain able to degrade 2-FP was subsequently performed. The reactor was thereafter continuously fed with 0.22 and 0.44 mM of 2-FP and with 5.9 mM of acetate (used as co-substrate), for 15 months. Full degradation of the compound was reached with a stoichiometric fluoride release. The 2-FP degrading strain was successfully retained by aerobic granules, as shown through the recovering of the strain from the granular sludge at the end of the experiment. Overall, the granular SBR has shown to be robust, exhibiting a high performance after bioaugmentation with the 2-FP degrading strain. This study corroborates the fact that bioaugmentation is often needed in cases where biodegradation of highly recalcitrant compounds is targeted.
- «
- 1 (current)
- 2
- 3
- »