Repository logo
 

Search Results

Now showing 1 - 10 of 65
  • Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivumL.)
    Publication . Oliveira, Rui S.; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena
    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.
  • Succession dynamics of ectomycorrhizal fungi in inoculated Quercus rubra seedlings – a field study
    Publication . Franco, Albina R.; Ramos, Miguel A.; Sousa, Nadine R.; Oliveira, Rui S.; Castro, Paula M. L.
    Selected ectomycorrhizal (ECM) fungi may have a beneficial effect on the establishment of nursery grown seedlings and may influence their survival on the first years. By increasing seedling capacity to capture nutrients, ECM fungi often contribute to a successful plant establishment. We investigated the performance of pre-inoculated Quercus rubra seedlings on a reforestation site and monitored ECM fungal persistence and succession dynamics between selected ECM fungi and native fungal community. Nursery grown Q. rubra seedlings inoculated with a mixture of ECM fungi (Cenococcum geophilum, Hebeloma crustuliniforme, H. mesophaeum, H. velutipes, Paxillus involutus, Scleroderma citrinum) and non-inoculated control oak seedlings, were transplanted to Serra da Cabreira in Northern Portugal. Two years after planting, the subsistence of the inoculated ECM fungi was assessed using ITS-DGGE. Results demonstrated that inoculation with selected ECM fungi at nursery stage promoted the establishment and improved the growth performance of out planted oak seedlings. C. geophilum was significantly associated with inoculated saplings but other ECM fungi species were also found. Moreover, ECM fungal communities of inoculated and non-inoculated samples are significantly different. Further monitoring is required to increase knowledge on the persistence of ECM fungal communities and their succession dynamics.
  • Bioaugmentation with endophytic bacterium E6S homologous to achromobacter piechaudii enhances metal rhizoaccumulation in host sedum plumbizincicola
    Publication . Ma, Ying; Zhang, Chang; Oliveira, Rui S.; Freitas, Helena; Luo, Yongming
    Application of hyperaccumulator-endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil, and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC) as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn, and Pb). Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn, and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn > Cd >Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn, and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.
  • Reforestation of burned stands: the effect of ectomycorrhizal fungi on Pinus pinaster establishment
    Publication . Sousa, Nadine R.; Franco, Albina R.; Ramos, Miguel A.; Oliveira, Rui S.; Castro, Paula M. L.
    The area occupied by Pinus pinaster in Portugal is rapidly diminishing because of forest fires. Ectomycorrhizal fungi form obligate, mutually beneficial associations with P. pinaster which improve plant growth and resistance to adverse conditions. The aim of this work was to assess whether native ectomycorrhizal fungi could be a useful tool in the reforestation of burned areas. The work was conducted in a forest nursery greenhouse, where P. pinaster seedlings were inoculated with compatible ectomycorrhizal fungal isolates: Suillus bovinus, Pisolithus tinctorius, Rhizopogon roseolus, and a mixture of the three fungi, using burned and unburned forest soil as substrate. Inoculation significantly enhanced the growth of P. pinaster, with R. roseolus proving to be the most effective in burned soil, with an 8-fold increase in plant fresh weight. Overall, inoculation stimulated growth most in burned than in unburned soil. This study suggests that inoculation with selected ectomycorrhizal fungi in containerised nurseries can be an advantageous approach for the successful establishment of P. pinaster in burned soil. The obtained results point out to the interest of extending these studies into fire-impacted areas, using ectomycorrhizal fungi as a biological tool.
  • The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil
    Publication . Ma, Ying; Oliveira, Rui S.; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena
    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multimetal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizinci cola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizinci cola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water ektractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.
  • Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment
    Publication . Oliveira, R. S.; Vosátka, M.; Dodd, J. C.; Castro, P. M. L.
    A field survey of the arbuscular mycorrhizal status of herbaceous plant species was conducted in a highly alkaline anthropogenic sediment resulting from the disposal of waste from an acetylene and polyvinyl chloride factory. Most plant species found at the site were mycorrhizal and the dominant mycotrophic plant species was Conyza bilbaoana. Fungal species richness was assessed by identification of spores extracted from the sediment and from continuously propagated trap pot cultures. All of the six species of arbuscular mycorrhizal fungi (AMF) found were from the genus Glomus. Glomus intraradices and G. mosseae were found in field-collected sediment samples and also occurred most frequently in trap cultures. To test the symbiotic effectiveness of these two fungi, seedlings of C. bilbaoana were inoculated with either native G. intraradices BEG163 or G. mosseae BEG198 and non-native G. intraradices BEG75 or G. mosseae BEG25 isolates in sterile and non-sterile sediment collected from the study site. All four isolates were able to colonise C. bilbaoana. However, AMF native to the target sediments were generally more effective than the non-native fungi in promoting plant establishment and growth under highly alkaline conditions. The non-native G. intraradices was, however, more effective than the non-native G. mosseae. The results of this study suggest the use of adapted AMF as inoculants for phytorestoration of alkaline anthropogenic-stressed sediments.
  • Phytoremediation as a biotechnological tool for environmental restoration
    Publication . Marques, Ana P. G. C.; Rangel, António O. S. S.; Calheiros, Cristina S. C.; Oliveira, Rui S.; Franco, Albina R.; Vosatka, Miroslav; Dodd, John C.
  • Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation
    Publication . Ma, Ying; Oliveira, Rui S.; Freitas, Helena; Zhang, Chang
    Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, acting as plant growth promoting microorganisms (PGPMs), may alleviate metal phytotoxicity and stimulate plant growth indirectly via the induction of defense mechanisms against phytopathogens, and/or directly through the solubilization of mineral nutrients (nitrogen, phosphate, potassium, iron, etc.), production of plant growth promoting substances (e.g., phytohormones), and secretion of specific enzymes (e.g., 1-aminocyclopropane-1-carboxylate deaminase). PGPM can also change metal bioavailability in soil through various mechanisms such as acidification, precipitation, chelation, complexation, and redox reactions. This review presents the recent advances and applications made hitherto in understanding the biochemical and molecular mechanisms of plant-microbe interactions and their role in the major processes involved in phytoremediation, such as heavy metal detoxification, mobilization, immobilization, transformation, transport, and distribution.
  • Tree breeding and mycorrhizal symbiosis as important tools in forestation processes
    Publication . Sousa, N. R.; Franco, A. R.; Ramos, Miguel A.; Oliveira, Rui S.; Castro, Paula M. L.
  • Use of different types of plants for the uptake of contaminants
    Publication . Calheiros, Cristina S.C.; Marques, Ana P. G. C.; Oliveira, Rui S.; Rangel, António O. S. S.; Castro, Paula M. L.