Browsing by Author "Lopes, Ana Rita"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Acinetobacter rudis sp. nov., isolated from raw milk and raw wastewaterPublication . Vaz-Moreira, Ivone; Novo, Ana; Hantsis-Zacharov, Elionora; Lopes, Ana Rita; Gomila, Margarita; Nunes, Olga C.; Manaia, Célia M.; Halpern, MalkaTwo bacterial strains, G30T and A1PC16, isolated respectively from raw milk and raw wastewater, were characterized using a polyphasic approach. Chemotaxonomic characterization supported the inclusion of these strains in the genus Acinetobacter, with Q-8 and Q-9 as the major respiratory quinones, genomic DNA G+C contents within the range observed for this genus(38–47 mol%) and C16 : 0, C18 : 1v9c and C16 : 1v7c/iso-C15 : 0 2-OH as the predominant fatty acids. The observation of 16S rRNA gene sequence similarity lower than 97% with other Acinetobacter species with validly published names led to the hypothesis that these isolates could represent a novel species. This hypothesis was supported by comparative analysis of partial sequences of the genes rpoB and gyrB, which showed that strains G30T and A1PC16 did not cluster with any species with validly published names, forming a distinct lineage. DNA–DNA hybridizations confirmed that the two strains were members of the same species, which could be distinguished from their congeners by several phenotypic characteristics. On the basis of these arguments, it is proposed that strains G30T and A1PC16 represent a novel species, for which the name Acinetobacter rudis sp. nov. is proposed. The type strain is strain G30T (5LMG 26107T 5CCUG 57889T 5DSM 24031T 5CECT 7818T).
- Application of nanoparticles in cancer treatment: a concise reviewPublication . Sell, Mariana; Lopes, Ana Rita; Escudeiro, Maria; Esteves, Bruno; Monteiro, Ana R.; Trindade, Tito; Cruz-Lopes, LuísaTimely diagnosis and appropriate antitumoral treatments remain of utmost importance, since cancer remains a leading cause of death worldwide. Within this context, nanotechnology offers specific benefits in terms of cancer therapy by reducing its adverse effects and guiding drugs to selectively target cancer cells. In this comprehensive review, we have summarized the most relevant novel outcomes in the range of 2010–2023, covering the design and application of nanosystems for cancer therapy. We have established the general requirements for nanoparticles to be used in drug delivery and strategies for their uptake in tumor microenvironment and vasculature, including the reticuloendothelial system uptake and surface functionalization with protein corona. After a brief review of the classes of nanovectors, we have covered different classes of nanoparticles used in cancer therapies. First, the advances in the encapsulation of drugs (such as paclitaxel and fisetin) into nanoliposomes and nanoemulsions are described, as well as their relevance in current clinical trials. Then, polymeric nanoparticles are presented, namely the ones comprising poly lactic-co-glycolic acid, polyethylene glycol (and PEG dilemma) and dendrimers. The relevance of quantum dots in bioimaging is also covered, namely the systems with zinc sulfide and indium phosphide. Afterwards, we have reviewed gold nanoparticles (spheres and anisotropic) and their application in plasmon-induced photothermal therapy. The clinical relevance of iron oxide nanoparticles, such as magnetite and maghemite, has been analyzed in different fields, namely for magnetic resonance imaging, immunotherapy, hyperthermia, and drug delivery. Lastly, we have covered the recent advances in the systems using carbon nanomaterials, namely graphene oxide, carbon nanotubes, fullerenes, and carbon dots. Finally, we have compared the strategies of passive and active targeting of nanoparticles and their relevance in cancer theranostics. This review aims to be a (nano)mark on the ongoing journey towards realizing the remarkable potential of different nanoparticles in the realm of cancer therapeutics.
- Characterization of bacterial communities from Masseiras, a unique Portuguese greenhouse agricultural systemPublication . Becerra-Castro, Cristina; Lopes, Ana Rita; Teixeira, Sara; Silva, M. Elisabete F.; Pimenta, Elisabete; Manaia, Célia M.; Nunes, Olga C."Masseiras" is an ancient Portuguese agriculture system, where soil was developed from sand dunes enriched with seaweeds over more than a century. Due to the importance for the local economy, this system evolved for greenhouse structures. In this study we compared the bacterial community composition and structure of "Masseiras" soil, aiming at assessing the potential impact of different agricultural practices. The bulk soil of two greenhouses (following or not the recommended agriculture good practices, FGP and NFGP, respectively) was compared based on their physicochemical properties and bacterial community. In both FGP and NFGP, Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Gemmatimonadetes were in a proportion of 5:1:1:1:1:1. However, the bacterial community of soil FGP was richer and more diverse than that of soil NFGP. Members of the classes Bacilli and Gemm-1, with higher relative abundance in NFGP and FGP, respectively, were those contributing most for distinguishing the bacterial communities of both soils. The differences in the structure of the bacterial communities correlated (Mantel test) with some soil physicochemical properties, such as electrical conductivity and nitrate and Zn contents, which were significantly higher in soil NFGP than in soil FGP.
- Irrigation with treated wastewater: potential impacts on microbial function and diversity in agricultural soilsPublication . Lopes, Ana Rita; Becerra-Castro, Cristina; Vaz-Moreira, Ivone; Silva, M. Elisabete F.; Nunes, Olga C.; Manaia, C. M.The reuse of treated wastewater could be a promising measure to attenuate the water scarcity burden. In agriculture, irrigation with wastewater may contribute to improve production yields, reduce the ecological footprint and promote socioeconomic benefits. However, it cannot be considered exempt of adverse consequences in environmental and human health. Apart from the introduction of some biological and chemical hazardous agents, the disturbance of the indigenous soil microbial communities and, thus, of vital soil functions impacting soil fertility may occur. The consequences of these disturbances are still poorly understood. This chapter summarises the physicochemical and microbiological alterations in soil resultant from irrigation with treated wastewater that are described in scientific literature. These alterations, which involve a high complexity of variables (soil, wastewater, climate, vegetal cover), may have impacts on soil quality and productivity. In addition, possible health risks may arise, in particular through the direct or indirect contamination of the food chain with micropollutants, pathogens or antibiotic resistance determinants. The current state of the art suggests that irrigation with treated wastewater may have a multitude of long-term implications on soil productivity and public health. Although further research is needed, it seems evident that the analysis of risks associated with irrigation with treated wastewater must take into account not only the quality of water, but other aspects as diverse as soil microbiota, soil type or the cultivated plant species.
- Literacia Empreendedora nos Jovens: Impacto da Implementação de um Programa de Empreendedorismo na EscolaPublication . Lopes, Ana Rita; Negrão, Mariana; Veríssimo, Lurdes
- Oryzisolibacter propanilivorax gen. nov., sp nov., a propanil-degrading bacteriumPublication . Vaz-Moreira, Ivone; Narciso-da-Rocha, Carlos; Lopes, Ana Rita; Carvalho, Gilda; Lobo-da-Cunha, Alexandre; Whitman, William B.; Snauwaert, Cindy; Vandamme, Peter; Manaia, Célia M.; Nunes, Olga C.Strain EPL6T, a Gram-negative, motile, short rod was isolated from a propanil and 3,4-dichloroaniline enrichment culture produced from rice paddy soil. Based on the analyses of the 16S rRNA gene sequence, strain EPL6T was observed to be a member of the family Comamonadaceae , sharing the highest pairwise identity with type strains of the species Alicycliphilus denitrificans K601T (96.8 %) and Melaminivora alkalimesophila CY1T (96.8 %). Strain EPL6T was able to grow in a temperature range of 15–37 °C, pH 6–9 and in the presence of up to 4 % (w/v) NaCl and tested positive for catalase and oxidase reactions. The major respiratory quinone was Q8. The genomic DNA had a G+C content of 69.4±0.9 mol%. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol, and the major fatty acid methyl esters comprised C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c/iso-C15 : 0 2-OH). Comparison of the genome sequence of strain EPL6T and of its closest neighbours, Melaminivora alkalimesophila CY1T and Alicycliphilus denitrificans K601T, yielded values of ANI ≤84.1 % and of AAI ≤80.3 %. Therefore, the genetic, phylogenetic, phenotypic and chemotaxonomic characteristics support the classification of this organism into a new taxon. Considering the genetic divergence of strain EPL6T from the type strains of the closest species, which belong to distinct genera, we propose a new genus within the family Comamonadaceae , named Oryzisolibacter propanilivorax gen. nov., sp. nov., represented by the isolate EPL6T as the type strain of the species (=LMG 28427T=CECT 8927T).
- Paenibacillus residui sp. nov., isolated from urban waste compostPublication . Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana Rita; Pukall, Rüdiger; Spröer, Cathrin; Schumann, Peter; Nunes, Olga C.; Manaia, Célia M.Two bacterial strains, MC-246T and MC-247, were isolated from municipal urban waste compost and characterized by a polyphasic approach. Both isolates were Gram-stain-variable, endosporeforming rods that were catalase-, oxidase- and b-galactosidase-positive, and able to grow at 25– 50 6C and pH 7.0–9.0, with optimum growth at 37 6C and pH 7. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0; the major respiratory quinone was menaquinone MK-7; the cell wall peptidoglycan was of type A1c; and the DNA G+C content was 49 mol%. These characteristics, as well as data from 16S RNA gene sequence analysis, showed that these strains were affiliated with the genus Paenibacillus; the type strains of Paenibacillus ginsengarvi and Paenibacillus hodogayensis were among their closest neighbours (,94.2 % sequence similarity). Nevertheless, the hypothesis that strains MC246T and MC-247 could represent a novel species was supported by the low 16S rRNA gene sequence similarity values shared with other members of the genus Paenibacillus and by the observation of distinct biochemical and physiological traits. Strains MC-246T and MC-247 shared 99.6 % 16S rRNA gene sequence similarity and showed almost identical MALDI-TOF mass spectra, but could be distinguished at the phenotypic and genotypic level. However, DNA–DNA hybridization between strains MC-246T and MC-247 resulted in values above 70 % indicating that both organisms represent a single species, for which the name Paenibacillus residui sp. nov. is proposed; the type strain is MC-246T (5DSM 22072T 5CCUG 57263T).
- Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: a comparison between aluminium sulphate and tannin coagulantsPublication . Grehs, Bárbara W. N.; Lopes, Ana Rita; Moreira, Nuno F. F.; Fernandes, Telma; Linton, Maria A. O.; Silva, Adrián M. T.; Manaia, Célia M.; Carissimi, Elvis; Nunes, Olga C.The presence of antibiotic resistant-bacteria (ARB) and antibiotic resistance genes (ARG) in treated effluents of urban wastewater treatment plants (WWTP) may represent a threat to the environment and public health. Therefore, cost-effective technologies contributing to minimize loads of these contaminants in the final effluents of WWTP are required. This study aimed at assessing the capacity of coagulation to reduce the ARB&ARG load in secondary treated urban wastewater (STWW), as well as the impact of the process on the structure and diversity of the bacterial community. Coagulation performance using aluminium sulphate, a synthetic substance, and tannins, a biowaste, was compared. Samples were analysed immediately before (STWW) and after the coagulation treatment (Alu, Tan), as well as after 3-days storage in the dark at room temperature (RSTWW, RAlu, RTan), to assess possible reactivation events. Both coagulants decreased the turbidity and colour and reduced the bacterial load (16S rRNA gene copy number, total heterotrophs (HET), and ARB (faecal coliforms resistant to amoxicillin (FC/AMX) or ciprofloxacin (FC/CIP) up to 1–2 log immediately after the treatment. Both coagulants reduced the load of intl1, but in average, aluminium sulphate was able to decrease the content of the analysed ARGs (blaTEM and qnrS) to lower levels than tannin. Reactivation after storage was observed mainly in RTan. In these samples the load of the culturable populations and qnrS gene prevalence increased, sometimes to values higher than those found in the initial wastewater. Reactivation was also characterized by an increment in Gammaproteobacteria relative abundance in the bacterial community, although with distinct patterns for RTan and RAlu. Curvibacter, Undibacterium and Aquaspirillum were among the most abundant genera in RAlu and Aeromonas, Pseudomonas and Stenotrophomonas in RTan. These bacterial community shifts were in agreement with the variations in the culturable bacterial counts of HET for RTan and FC/CIP for RAlu. In summary, the overall performance of aluminium sulphate was better than that of tannins in the treatment of treated urban wastewater.
- Wastewater reuse in irrigation: a microbiological perspective on implications in soil fertility and human and environmental healthPublication . Becerra-Castro, Cristina; Lopes, Ana Rita; Vaz-Moreira, Ivone; Silva, Elisabete F.; Manaia, Célia M.; Nunes, Olga C.The reuse of treated wastewater, in particular for irrigation, is an increasingly common practice, encouraged by governments and official entities worldwide. Irrigation with wastewater may have implications at two different levels: alter the physicochemical and microbiological properties of the soil and/or introduce and contribute to the accumulation of chemical and biological contaminants in soil. The first may affect soil productivity and fertility; the second may pose serious risks to the human and environmental health. The sustainable wastewater reuse in agriculture should prevent both types of effects, requiring a holistic and integrated risk assessment. In this article we critically review possible effects of irrigation with treated wastewater, with special emphasis on soil microbiota. The maintenance of a rich and diversified autochthonous soil microbiota and the use of treated wastewater with minimal levels of potential soil contaminants are proposed as sine qua non conditions to achieve a sustainable wastewater reuse for irrigation.