Logo do repositório
 
Publicação

Automatic selection of indicators in a fully saturated regression

dc.contributor.authorSantos, Carlos
dc.contributor.authorHendry, David F.
dc.contributor.authorJohansen, Soren
dc.date.accessioned2011-10-21T10:22:49Z
dc.date.available2011-10-21T10:22:49Z
dc.date.issued2008
dc.description.abstractWe consider selecting a regression model, using a variant of the generalto- specific algorithm in PcGets, when there are more variables than observations. We look at the special case where the variables are single impulse dummies, one defined for each observation. We show that this setting is unproblematic if tackled appropriately, and obtain the asymptotic distribution of the mean and variance in a location-scale model, under the null that no impulses matter. Monte Carlo simulations confirm the null distributions and suggest extensions to highly non-normal casespor
dc.identifier.citationSANTOS, Carlos; HENDRY, David F.; JOHANSEN, Soren - Automatic selection of indicators in a fully saturated regression. Computational Statistics. ISSN: 1613-9658. Vol.23 (2008) p. 317–335por
dc.identifier.doi10.1007/s00180-007-0054-z
dc.identifier.urihttp://hdl.handle.net/10400.14/6624
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringerpor
dc.subjectIndicatorspor
dc.subjectRegression saturationpor
dc.subjectSubset selectionpor
dc.subjectModel selectionpor
dc.titleAutomatic selection of indicators in a fully saturated regressionpor
dc.typejournal article
dspace.entity.typePublication
rcaap.rightsopenAccesspor
rcaap.typearticlepor

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
art-int-arb_2008_FEG_1500_Santos_Carlos_2.1.PDF
Tamanho:
339.17 KB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
3.44 KB
Formato:
Item-specific license agreed upon to submission
Descrição: