Logo do repositório
 
Miniatura indisponível
Publicação

Automatic selection of indicators in a fully saturated regression

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
art-int-arb_2008_FEG_1500_Santos_Carlos_2.1.PDF339.17 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We consider selecting a regression model, using a variant of the generalto- specific algorithm in PcGets, when there are more variables than observations. We look at the special case where the variables are single impulse dummies, one defined for each observation. We show that this setting is unproblematic if tackled appropriately, and obtain the asymptotic distribution of the mean and variance in a location-scale model, under the null that no impulses matter. Monte Carlo simulations confirm the null distributions and suggest extensions to highly non-normal cases

Descrição

Palavras-chave

Indicators Regression saturation Subset selection Model selection

Contexto Educativo

Citação

SANTOS, Carlos; HENDRY, David F.; JOHANSEN, Soren - Automatic selection of indicators in a fully saturated regression. Computational Statistics. ISSN: 1613-9658. Vol.23 (2008) p. 317–335

Projetos de investigação

Unidades organizacionais

Fascículo