Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Phytomanagement of metal(loid) - contaminated soils: options, efficiency and valuePublication . Moreira, Helena; Pereira, Sofia I. A.; Mench, Michel; Garbisu, Carlos; Kidd, Petra; Castro, Paula M. L.The growing loss of soil functionality due to contamination by metal(loid)s, alone or in combination with organic pollutants, is a global environmental issue that entails major risks to ecosystems and human health. Consequently, the management and restructuring of large metal(loid)-polluted areas through sustainable nature-based solutions is currently a priority in research programs and legislation worldwide. Over the last few years, phytomanagement has emerged as a promising phytotechnology, focused on the use of plants and associated microorganisms, together with ad hoc site management practices, for an economically viable and ecologically sustainable recovery of contaminated sites. It promotes simultaneously the recovery of soil ecological functions and the decrease of pollutant linkages, while providing economic revenues, e.g. by producing non-food crops for biomass-processing technologies (biofuel and bioenergy sector, ecomaterials, biosourced-chemistry, etc.), thus contributing to the international demand for sustainable and renewable sources of energy and raw materials for the bioeconomy. Potential environmental benefits also include the provision of valuable ecosystem services such as water drainage management, soil erosion deterrence, C sequestration, regulation of nutrient cycles, xenobiotic biodegradation, and metal(loid) stabilization. Phytomanagement relies on the proper selection of (i) plants and (ii) microbial inoculants with the capacity to behave as powerful plant allies, e.g., PGPB: plant growth-promoting bacteria and AMF: arbuscular mycorrhizal fungi. This review gives an up-to-date overview of the main annual, perennial, and woody crops, as well as the most adequate cropping systems, presently used to phytomanage metal(loid)-contaminated soils, and the relevant products and ecosystems services provided by the various phytomanagement options. Suitable bioaugmentation practices with PGPB and AMF are also discussed. Furthermore, we identify the potential interest of phytomanagement for stakeholders and end-users and highlight future opportunities boosted by an effective engagement between environmental protection and economic development. We conclude by presenting the legal and regulatory framework of soil remediation and by discussing prospects for phytotechnologies applications in the future.
- Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinityPublication . Moreira, Helena; Pereira, Sofia I.A.; Vega, Alberto; Castro, Paula M.L.; Marques, Ana P.G.C.Salt-affected soils are a major problem worldwide for crop production. Bioinocula such as plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) can help plants to thrive in these areas but interactions between them and with soil conditions can modulate the effects on their host. To test potential synergistic effects of bioinoculants with intrinsically different functional relationships with their host in buffering the effect of saline stress, maize plants were grown under increasing soil salinity (0–5 g NaCl kg−-1 soil) and inoculated with two PGPB strains (Pseudomonas reactans EDP28, and Pantoea alli ZS 3-6), one AMF (Rhizoglomus irregulare), and with the combination of both. We then modelled biomass, ion and nutrient content in maize plants in response to increasing salt concentration and microbial inoculant treatments using generalized linear models. The impacts of the different treatments on the rhizosphere bacterial communities were also analyzed. Microbial inoculants tended to mitigate ion imbalances in plants across the gradient of NaCl, promoting maize growth and nutritional status. These effects were mostly prominent in the treatments comprising the dual inoculation (AMF and PGPB), occurring throughout the gradient of salinity in the soil. The composition of bacterial communities of the soil was not affected by microbial treatments and were mainly driven by salt exposure. The tested bioinocula are most efficient for maize growth and health when co-inoculated, increasing the content of K+ accompanied by an effective decrease of Na+ in plant tissues. Moreover, synergistic effects potentially contribute to expanding crop production to otherwise unproductive soils. Results suggest that the combination of AMF and PGPB leads to interactions that may have a potential role in alleviating the stress and improve crop productivity in salt-affected soils.
- Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria – Effects on phytoremediation strategiesPublication . Marques, Ana P. G. C.; Moreira, Helena; Franco, Albina R.; Rangel, António O. S. S.; Catro, Paula, M. L.Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination.