Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Paenibacillus residui sp. nov., isolated from urban waste compost
    Publication . Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana Rita; Pukall, Rüdiger; Spröer, Cathrin; Schumann, Peter; Nunes, Olga C.; Manaia, Célia M.
    Two bacterial strains, MC-246T and MC-247, were isolated from municipal urban waste compost and characterized by a polyphasic approach. Both isolates were Gram-stain-variable, endosporeforming rods that were catalase-, oxidase- and b-galactosidase-positive, and able to grow at 25– 50 6C and pH 7.0–9.0, with optimum growth at 37 6C and pH 7. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C17 : 0; the major respiratory quinone was menaquinone MK-7; the cell wall peptidoglycan was of type A1c; and the DNA G+C content was 49 mol%. These characteristics, as well as data from 16S RNA gene sequence analysis, showed that these strains were affiliated with the genus Paenibacillus; the type strains of Paenibacillus ginsengarvi and Paenibacillus hodogayensis were among their closest neighbours (,94.2 % sequence similarity). Nevertheless, the hypothesis that strains MC246T and MC-247 could represent a novel species was supported by the low 16S rRNA gene sequence similarity values shared with other members of the genus Paenibacillus and by the observation of distinct biochemical and physiological traits. Strains MC-246T and MC-247 shared 99.6 % 16S rRNA gene sequence similarity and showed almost identical MALDI-TOF mass spectra, but could be distinguished at the phenotypic and genotypic level. However, DNA–DNA hybridization between strains MC-246T and MC-247 resulted in values above 70 % indicating that both organisms represent a single species, for which the name Paenibacillus residui sp. nov. is proposed; the type strain is MC-246T (5DSM 22072T 5CCUG 57263T).
  • Patulibacter medicamentivorans sp. nov., isolated from activated sludge of a wastewater treatment plant
    Publication . Almeida, Bárbara; Vaz-Moreira, Ivone; Schumann, Peter; Nunes, Olga C.; Carvalho, Gilda; Crespo, Maria T. Barreto
    A Gram-positive, aerobic, non-motile, non-endospore-forming rod-shaped bacterium with ibuprofen-degrading capacity, designated strain I11(T), was isolated from activated sludge from a wastewater treatment plant. The major respiratory quinone was demethylmenaquinone DMK-7, C-18:1 cis9 was the predominant fatty acid, phosphatidylglycerol was the predominant polar lipid, the cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and the G+C content of the genonnic DNA was 74.1 mol%. On the basis of 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain I11(T) were Patulibacter ginsengiterrae CECT 7603(T) (96.8% similarity), Patulibacter minatonensis DSM 18081(T) (96.6 %) and Patulibacter americanus DSM 16676(T) (96.6%). Phenotypic characterization supports the inclusion of strain I11(T) within the genus Patulibacter (phylum Actinobacteria). However, distinctive features and 16S rRNA gene sequence analysis suggest that is represents a novel species, for which the name Patulibacter medicamentivorans sp. nov. is proposed. The type strain is I11(T) (=DSM 25962(T)=CECT 8141(T)).
  • Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant
    Publication . Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana R.; Lobo-da-Cunha, Alexandre; Sproer, Cathrin; Schumann, Peter; Nunes, Olga C.; Manaia, Célia M.
    A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22T, was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15–37 6C, at pH 7–10 and with ,8% (w/v) NaCl (optimum growth: 30 6C, pH 7–8 and 1–3% NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22T was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162T (98.5% 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2T (97.9 %), Bacillus infantis SMC 4352-1T (97.4 %), Bacillus firmus IAM 12464T (96.8 %) and Bacillus muralis LMG 20238T (96.8 %). DNA–DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22T from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22T (5DSM 23494T5NRRL B-59432T5LMG 25783T).