Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 10
  • Combinatory approach for developing silk fibroin-based scaffolds with hierarchical porosity and enhanced performance for cartilage tissue engineering applications
    Publication . Ribeiro, Viviana P.; Yan, Le-Ping; Oliveira, Ana; Oliveira, Joaquim M.; Reis, Rui L.
    Introduction: The combination of several processing technologies can open the possibility for producing scaffolds with superior performance for tissue engineering (TE) applications. Hydrogels are structurally similar to the natural extracellular matrix microenvironment presenting high elasticity and resistance to compression forces. They have been extensively used in biomedical devices fabrication and for TE applications, including for cartilage defects repair[1]. Recently, it was found that proteins like silk fibroin (SF), presenting tyrosine groups can be used to prepare fast formed hydrogels with controlled gelation properties, via an enzyme-mediated cross-linking reaction using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)[2],[3]. Moreover, the high versatility, processability and tailored mechanical properties of SF, make this natural polymer attractive for the development of innovative scaffolding strategies for cartilage TE applications[4],[5]. Materials and Methods: The present work proposes a novel route for developing SF-based scaffolds derived from highconcentrated SF (16wt%) enzymatically cross-linked by a HRP/H2O2 complex. The combination of salt-leaching and freeze-drying methodologies was used to prepare macro/microporous SF scaffolds with an interconnected structure and specific features regarding biodegradation and mechanical properties (Fig. 1a). The scaffolds morphology and porosity were analyzed by SEM and micro-CT. The mechanical properties (Instron) and protein conformation (FTIR, XRD) were also assessed. In order to evaluate the scaffolds structural integrity, swelling ratio and degradation profile studies were performed for a period of 30 day. This work also aims to evaluate the in vitro chondrogenic differentiation response by culturing human adipose derived stem cells (hASCs) over 21 days in basal and chondrogenic conditions. Cell behaviour in the presence of the macro/microporous structures will be evaluated through different quantitative (Live/Dead, DNA, GAGs, RT PCR) and qualitative (SEM, histology, immunocytochemistry) assays. Results and Discussion: The macro/microporous SF scaffolds showed high porosity and interconnectivity with the trabecular structures evenly distributed (Fig. 1b,c). A dramatic decrease of compressive modulus was observed for samples in hydrated state. Chemical analysis revealed that SF scaffolds displayed the characteristic peaks for β-sheet conformation. Swelling ratio data demonstrated a large swelling capacity, maintaining their structural integrity for 30 days. As expected, when immersed in protease XIV the degradation rate of SF scaffolds increased. Based on the promising morphology and physicochemical properties of the developed SF scaffolds, in vitro chondrogenic differentiation studies with hASCs are envisioned in order to validate their performance for cartilage regeneration applications.Conclusion: This study proposes an innovative approach to produce fast-formed porous SF scaffolds using enzymatically crosslinked SF hydrogels structured by the combination of salt-leaching and freeze-drying methodologies. The obtained results can provide a valuable reference of SF as a tunable and versatile biomaterial with great potential for applications in cartilage TE scaffolding.
  • Tumor growth suppression induced by biomimetic silk fibroin hydrogels
    Publication . Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; Morais, Alain da Silva; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.
    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials.
  • Silk-based anisotropical 3D biotextiles for bone regeneration
    Publication . Ribeiro, Viviana P.; Silva-Correia, Joana; Nascimento, Ana I.; Morais, Alain da Silva; Marques, Alexandra P.; Ribeiro, Ana S.; Silva, Carla J.; Bonifácio, Grata; Sousa, Rui A.; Oliveira, Joaquim M.; Oliveira, Ana L.; Reis, Rui L.
    Bone loss in the craniofacial complex can been treated using several conventional therapeutic strategies that face many obstacles and limitations. In this work, novel three-dimensional (3D) biotextile architectures were developed as a possible strategy for flat bone regeneration applications. As a fully automated processing route, this strategy as potential to be easily industrialized. Silk fibroin (SF) yarns were processed into weft-knitted fabrics spaced by a monofilament of polyethylene terephthalate (PET). A comparative study with a similar 3D structure made entirely of PET was established. Highly porous scaffolds with homogeneous pore distribution were observed using micro-computed tomography analysis. The wet state dynamic mechanical analysis revealed a storage modulus In the frequency range tested, the storage modulus values obtained for SF-PET scaffolds were higher than for the PET scaffolds. Human adipose-derived stem cells (hASCs) cultured on the SF-PET spacer structures showed the typical pattern for ALP activity under osteogenic culture conditions. Osteogenic differentiation of hASCs on SF PET and PET constructs was also observed by extracellular matrix mineralization and expression of osteogenic-related markers (osteocalcin, osteopontin and collagen type I) after 28 days of osteogenic culture, in comparison to the control basal medium. The quantification of convergent macroscopic blood vessels toward the scaffolds by a chick chorioallantoic membrane assay, showed higher angiogenic response induced by the SF-PET textile scaffolds than PET structures and gelatin sponge controls. Subcutaneous implantation in CD-1 mice revealed tissue ingrowth's accompanied by blood vessels infiltration in both spacer constructs. The structural adaptability of textile structures combined to the structural similarities of the 3D knitted spacer fabrics to craniofacial bone tissue and achieved biological performance, make these scaffolds a possible solution for tissue engineering approaches in this area.
  • Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death
    Publication . Ribeiro, Viviana P.; Silva-Correia, Joana; Gonçalves, Cristiana; Pina, Sandra; Radhouani, Hajer; Montonen, Toni; Oliveira, Joaquim M.; Oliveira, Ana L.
    Timely and spatially-regulated injectable hydrogels, able to suppress growing tumors in response to conformational transitions of proteins, are of great interest in cancer research and treatment. Herein, we report rapidly responsive silk fibroin (SF) hydrogels formed by a horseradish peroxidase (HRP) crosslinking reaction at physiological conditions, and demonstrate their use as an artificial biomimetic three-dimensional (3D) matrix. The proposed SF hydrogels presented a viscoelastic nature of injectable hydrogels and spontaneous conformational changes from random coil to β-sheet conformation under physiological conditions. A human neuronal glioblastoma (U251) cell line was used for screening cell encapsulation and in vitro evaluation within the SF hydrogels. The transparent random coil SF hydrogels promoted cell viability and proliferation up to 10 days of culturing, while the crystalline SF hydrogels converted into β-sheet structure induced the formation of TUNEL-positive apoptotic cells. Therefore, this work provides a powerful tool for the investigation of the microenvironment on the programed tumor cells death, by using rapidly responsive SF hydrogels as 3D in vitro tumor models.
  • Modulating cell adhesion to polybutylene succinate biotextile constructs for tissue engineering applications
    Publication . Ribeiro, Viviana P.; Almeida, Lília R.; Martins, Ana R.; Pashkuleva, Iva; Marques, Alexandra P.; Ribeiro, Ana S.; Silva, Carla J.; Bonifácio, Graça; Sousa, Rui A.; Oliveira, Ana L.; Reis, Rui L.
    Textile-based technologies are powerful routes for the production of three-dimensional porous architectures for tissue engineering applications because of their feasibility and possibility for scaling-up. Herein, the use of knitting technology to produce polybutylene succinate fibre-based porous architectures is described. Furthermore, different treatments have been applied to functionalize the surface of the scaffolds developed: sodium hydroxide etching, ultraviolet radiation exposure in an ozone atmosphere and grafting (acrylic acid, vinyl phosphonic acid and vinyl sulphonic acid) after oxygen plasma activation as a way to tailor cell adhesion. A possible effect of the applied treatments on the bulk properties of the textile scaffolds has been considered and thus tensile tests in dry and hydrated states were also carried out. The microscopy results indicated that the surface morphology and roughness were affected by the applied treatments. The X-ray photoelectron spectroscopy and contact angle measurements showed the incorporation of oxygen-containing groups and higher surface free energy as result of the surface treatments applied. The DNA quantification and scanning electron microscopy analysis revealed that these modifications enhanced cell adhesion and altered cell morphology. Generally, sodium hydroxide treatment altered most significantly the surface properties, which in turn resulted in a high number of cells adherent to these surfaces. Based on the results obtained, the proposed surface treatments are appropriate to modify polybutylene succinate knitting scaffolds, influencing cell adhesion and its potential for use in tissue engineering applications.
  • Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration
    Publication . Ribeiro, Viviana P.; Pina, Sandra; Costa, João B.; Cengiz, Ibrahim Fatih; García-Fernández, Luis; Fernández-Gutiérrez, Maria del Mar; Paiva, Olga C.; Oliveira, Ana L.; San-Román, Julio; Oliveira, Joaquim M.; Reis, Rui L.
    Osteochondral (OC) regeneration faces several limitations in orthopedic surgery, owing to the complexity of the OC tissue that simultaneously entails the restoration of articular cartilage and subchondral bone diseases. In this study, novel biofunctional hierarchical scaffolds composed of a horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) cartilage-like layer (HRP-SF layer) fully integrated into a HRP-SF/ZnSr-doped β-tricalcium phosphate (β-TCP) subchondral bone-like layer (HRP-SF/dTCP layer) were proposed as a promising strategy for OC tissue regeneration. For comparative purposes, a similar bilayered structure produced with no ion incorporation (HRP-SF/TCP layer) was used. A homogeneous porosity distribution was achieved throughout the scaffolds, as shown by micro-computed tomography analysis. The ion-doped bilayered scaffolds presented a wet compressive modulus (226.56 ± 60.34 kPa) and dynamic mechanical properties (ranging from 403.56 ± 111.62 to 593.56 ± 206.90 kPa) superior to that of the control bilayered scaffolds (189.18 ± 90.80 kPa and ranging from 262.72 ± 59.92 to 347.68 ± 93.37 kPa, respectively). Apatite crystal formation, after immersion in simulated body fluid (SBF), was observed in the subchondral bone-like layers for the scaffolds incorporating TCP powders. Human osteoblasts (hOBs) and human articular chondrocytes (hACs) were co-cultured onto the bilayered structures and monocultured in the respective cartilage and subchondral bone half of the partitioned scaffolds. Both cell types showed good adhesion and proliferation in the scaffold compartments, as well as adequate integration of the interface regions. Osteoblasts produced a mineralized extracellular matrix (ECM) in the subchondral bone-like layers, and chondrocytes showed GAG deposition. The gene expression profile was different in the distinct zones of the bilayered constructs, and the intermediate regions showed pre-hypertrophic chondrocyte gene expression, especially on the BdTCP constructs. Immunofluorescence analysis supported these observations. This study showed that the proposed bilayered scaffolds allowed a specific stimulation of the chondrogenic and osteogenic cells in the co-culture system together with the formation of an osteochondral-like tissue interface. Hence, the structural adaptability, suitable mechanical properties, and biological performance of the hierarchical scaffolds make these constructs a desired strategy for OC defect regeneration.
  • Continuous-flow precipitation as a route to prepare highly controlled nanohydroxyapatite: In vitro mineralization and biological evaluation
    Publication . Castro, Filipa; Ribeiro, Viviana. P.; Ferreira, António; Oliveira, Ana L.; Reis, Rui L.; Teixeira, José A.; Rocha, Fernando
    This work reports the biological evaluation of nanosized hydroxyapatite (HAp) previously synthesized by continuous-flow precipitation in a scaled-up meso oscillatory flow reactor (meso-OFR). Physicochemical characterization of the synthesized HApsuggests high surface reactivity namely because of its high specific surface area and low crystallinity. On the other hand, in vitro biomineralization assays demonstrated the apatite-forming activity of the prepared HAp and their higher surface reactivity when compared to a commercial HAp. Furthermore, human osteoblastic-like (Saos-2) cells culture evidenced that the synthesized HAp stimulated cell proliferation, especially when applied at lower concentrations (30 and 50 μg ml−1), although its cellular uptake behavior. Therefore, the prepared HApshows immense potential as biomedical material, as well as drug and gene delivery vehicle. The results are also very promising regarding further scaling up of the process, as the designed methodology allow for the preparation in a continuous mode of nanosized HAp with controlled physico-chemical properties.
  • Influence of different surface modification treatments on silk biotextiles for tissue engineering applications
    Publication . Ribeiro, Viviana P.; Almeida, Lília R.; Martins, Ana R.; Pashkuleva, Iva; Marques, Alexandra P.; Ribeiro, Ana S.; Silva, Carla J.; Bonifácio, Graça; Sousa, Rui A.; Reis, Rui L.; Oliveira, Ana L.
    Biotextile structures from silk fibroin have demonstrated to be particularly interesting for tissue engineering (TE) applications due to their high mechanical strength, interconnectivity, porosity, and ability to degrade under physiological conditions. In this work, we described several surface treatments of knitted silk fibroin (SF) scaffolds, namely sodium hydroxide (NaOH) solution, ultraviolet radiation exposure in an ozone atmosphere (UV/O3) and oxygen (O2) plasma treatment followed by acrylic acid (AAc), vinyl phosphonic acid (VPA), and vinyl sulfonic acid (VSA) immersion. The effect of these treatments on the mechanical properties of the textile constructs was evaluated by tensile tests in dry and hydrated states. Surface properties such as morphology, topography, wettability and elemental composition were also affected by the applied treatments. The in vitro biological behavior of L929 fibroblasts revealed that cells were able to adhere and spread both on the untreated and surface-modified textile constructs. The applied treatments had different effects on the scaffolds' surface properties, confirming that these modifications can be considered as useful techniques to modulate the surface of biomaterials according to the targeted application.
  • Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration
    Publication . Ribeiro, Viviana P.; Morais, Alain da Silva; Maia, F. Raquel; Canadas, R. F.; Costa, João B.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.
    Several processing technologies and engineering strategies have been combined to create scaffolds with superior performance for efficient tissue regeneration. Cartilage tissue is a good example of that, presenting limited self-healing capacity together with a high elasticity and load-bearing properties. In this work, novel porous silk fibroin (SF) scaffolds derived from horseradish peroxidase (HRP)-mediated crosslinking of highly concentrated aqueous SF solution (16 wt%) in combination with salt-leaching and freeze-drying methodologies were developed for articular cartilage tissue engineering (TE) applications. The HRP-crosslinked SF scaffolds presented high porosity (89.3 ± 0.6%), wide pore distribution and high interconnectivity (95.9 ± 0.8%). Moreover, a large swelling capacity and favorable degradation rate were observed up to 30 days, maintaining the porous-like structure and β-sheet conformational integrity obtained with salt-leaching and freeze-drying processing. The in vitro studies supported human adipose-derived stem cells (hASCs) adhesion, proliferation, and high glycosaminoglycans (GAGs) synthesis under chondrogenic culture conditions. Furthermore, the chondrogenic differentiation of hASCs was assessed by the expression of chondrogenic-related markers (collagen type II, Sox-9 and Aggrecan) and deposition of cartilage-specific extracellular matrix for up to 28 days. The cartilage engineered constructs also presented structural integrity as their mechanical properties were improved after chondrogenic culturing. Subcutaneous implantation of the scaffolds in CD-1 mice demonstrated no necrosis or calcification, and deeply tissue ingrowth. Collectively, the structural properties and biological performance of these porous HRP-crosslinked SF scaffolds make them promising candidates for cartilage regeneration. Statement of Significance In cartilage tissue engineering (TE), several processing technologies have been combined to create scaffolds for efficient tissue repair. In our study, we propose novel silk fibroin (SF) scaffolds derived from enzymatically crosslinked SF hydrogels processed by salt-leaching and freeze-drying technologies, for articular cartilage applications. Though these scaffolds, we were able to combine the elastic properties of hydrogel-based systems, with the stability, resilience and controlled porosity of scaffolds processed via salt-leaching and freeze-drying technologies. SF protein has been extensively explored for TE applications, as a result of its mechanical strength, elasticity, biocompatibility, and biodegradability. Thus, the structural, mechanical and biological performance of the proposed scaffolds potentiates their use as three-dimensional matrices for cartilage regeneration.
  • Thermal annealed silk fibroin membranes for periodontal guided tissue regeneration
    Publication . Geão, Catarina; Costa-Pinto, Ana R.; Cunha-Reis, Cassilda; Ribeiro, Viviana P.; Vieira, Sílvia; Oliveira, Joaquim M.; Reis, Rui L.; Oliveira, A. L.
    Guided tissue regeneration (GTR) is a surgical procedure applied in the reconstruction of periodontal defects, where an occlusive membrane is used to prevent the fast-growing connective tissue from migrating into the defect. In this work, silk fibroin (SF) membranes were developed for periodontal guided tissue regeneration. Solutions of SF with glycerol (GLY) or polyvinyl alcohol (PVA) where prepared at several weight ratios up to 30%, followed by solvent casting and thermal annealing at 85 °C for periods of 6 and 12 h to produce high flexible and stable membranes. These were characterized in terms of their morphology, physical integrity, chemical structure, mechanical and thermal properties, swelling capability and in vitro degradation behavior. The developed blended membranes exhibited high ductility, which is particular relevant considering the need for physical handling and adaptability to the defect. Moreover, the membranes were cultured with human periodontal ligament fibroblast cells (hPDLs) up to 7 days. Also, the higher hydrophilicity and consequent in vitro proteolytic degradability of these blends was superior to pure silk fibroin membranes. In particular SF/GLY blends demonstrated to support high cell adhesion and viability with an adequate hPDLs’ morphology, make them excellent candidates for applications in periodontal regeneration.