Browsing by Author "Saraiva, Jorge A."
Now showing 1 - 10 of 59
Results Per Page
Sort Options
- Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanolPublication . Ferreira, Ricardo M.; Mota, Maria J.; Lopes, Rita P.; Sousa, Sérgio; Gomes, Ana M.; Delgadillo, Ivonne; Saraiva, Jorge A.Saccharomyces cerevisiae is a yeast of great importance in many industries and it has been frequently used to produce food products and beverages. More recently, other uses have also been described for this microorganism, such as the production of bioethanol, as a clean, renewable and sustainable alternative fuel. High pressure processing (HPP) is a technology that has attracted a lot of interest and is increasingly being used in the food industry as a non-thermal method of food processing. However, other applications of high pressure (HP) are being studied with this technology in different areas, for example, for fermentation processes, because microbial cells can resist to pressure sub-lethal levels, due to the development of different adaptation mechanisms. The present work intended to study the adaptation of S. cerevisiae to high pressure, using consecutive cycles of fermentation under pressure (at sub-lethal levels), in an attempt to enhance the production of bioethanol. In this context, three pressure levels (15, 25 and 35 MPa) were tested, with each of them showing different effects on S. cerevisiae fermentation behavior. After each cycle at 15 and 25 MPa, both cell growth and ethanol production showed a tendency to increase, suggesting the adaptation of S. cerevisiae to these pressure levels. In fact, at the end of the 4th cycle, the ethanol production was higher under pressure than at atmospheric pressure (0.1 MPa) (8.75 g.L−1 and 10.69 g.L−1 at 15 and 25 MPa, respectively, compared to 8.02 g.L−1 at atmospheric pressure). However, when the pressure was increased to 35 MPa, cell growth and bioethanol production decreased, with minimal production after the 4 consecutive fermentation cycles. In general, the results of this work suggest that consecutive cycles of fermentation under sub-lethal pressure conditions (15 and 25 MPa) can stimulate adaptation to pressure and improve the bioethanol production capacity by S. cerevisiae; hence, this technology can be used to increase rates, yields and productivities of alcoholic fermentation.
- Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extractionPublication . Alexandre, Elisabete M. C.; Silva, Sara; Santos, Sónia A. O.; Silvestre, Armando J. D.; Duarte, Maria F.; Saraiva, Jorge A.; Pintado, ManuelaThis study aimed to assess the effect of high pressure (300 and 600 MPa) and enzymatic extraction (pectinase and cellulase) on the phenolic compounds profile, antioxidant capacity and antimicrobial activity of extracts from pomegranate by-products. Antimicrobial activity against eight different strains of pathogenic and contaminant bacteria and against five beneficial bacteria including Lactobacillus and Bifidobacterium strains were determined. The maximum level of total phenolic content, as well as antioxidant capacity were observed at 300 MPa, however enzymatic extraction did not improve the extraction yields. Punicalagin isomers and bis-hexahydroxydiphenoyl-glucoside isomer were the most abundant phenolic compounds found in the extracts. All pomegranate peel extracts demonstrated selective antimicrobial activity against all pathogenic bacteria without affecting beneficial ones. Pressurized extracts presented lower minimum inhibitory concentration against Bacillus cereus and Pseudomonas aeruginosa and lower minimum bactericidal concentration against B. cereus, while, enzymatic extracts presented lower minimum bactericidal concentration for Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus and Listeria monocytogenes. Principal component analyses reveled that antioxidant activity and phenolic compounds content were strongly related with antimicrobial activity. Pomegranate peels extracts obtained by high pressure extraction could so be used as a source of high added-value bioactive compounds for antioxidant and antimicrobial applications.
- Application of high pressure with homogenization, temperature, carbon dioxide, and cold plasma for the inactivation of bacterial spores: a reviewPublication . Lopes, Rita P.; Mota, Maria J.; Gomes, Ana M.; Delgadillo, Ivonne; Saraiva, Jorge A.Formation of highly resistant spores is a concern for the safety of low-acid foods as they are a perfect vehicle for food spoilage and/or human infection. For spore inactivation, the strategy usually applied in the food industry is the intensification of traditional preservation methods to sterilization levels, which is often accompanied by decreases of nutritional and sensory properties. In order to overcome these unwanted side effects in food products, novel and emerging sterilization technologies are being developed, such as pressure-assisted thermal sterilization, high-pressure carbon dioxide, high-pressure homogenization, and cold plasma. In this review, the application of these emergent technologies is discussed, in order to understand the effects on bacterial spores and their inactivation and thus ensure food safety of low-acid foods. In general, the application of these novel technologies for inactivating spores is showing promising results. However, it is important to note that each technique has specific features that can be more suitable for a particular type of product. Thus, the most appropriate sterilization method for each product (and target microorganisms) should be assessed and carefully selected.
- Bioactive compounds, pigments, antioxidant activity and antimicrobial activity of yellow prickly pear peelsPublication . Castro, Luís M. G.; Alexandre, Elisabete M. C.; Pintado, Manuela; Saraiva, Jorge A.The main goal of this research was to study the effects of pressure, extraction time and ethanol concentration on antioxidant activity, total phenolics, flavonoids, anthocyanins, carotenoids and betalains compounds extraction from yellow prickly pear peels. A Box-Behnken design and Response Surface Methodology were used to evaluate the effects and estimate the optimum extraction conditions. Antimicrobial activity was evaluated against Escherichia coli and Listeria innocua. Ethanol concentration was the variable that showed the highest effect on extraction yields but high-pressure increased extraction yields between 6% and 17%. Models showed good fitting and adequacy to the experimental data and the high correlation of models indicated that it can be employed to optimise extraction conditions. The experimental and predicted values differed <10% and the extracts inhibited the growth of both bacteria. High-pressure could be a promising extraction process to improve extraction of bioactives from prickly pear peels.
- Bioactive polysaccharides extracts from sargassum muticumby high hydrostatic pressurePublication . Rodrigues, Dina; Freitas, Ana C.; Queirós, Rui; Rocha-Santos, Teresa A. P.; Saraiva, Jorge A.; Gomes, Ana M. P.; Duarte, Armando C.Sargassum muticum is an important source of bioactive polysaccharides; hence, high hydrostatic pressure (HHP) was used to improve their extraction efficiency. Response surface methodology and a Box-Behnken full factorial design were employed to assess and optimize the effects of extraction conditions on the yield, total sugars, total sulfated sugars and antioxidant activity of S. muticum extracts. The extraction yield ranged between 32 and 40.4% independently of the extraction conditions or seaweed solid/liquid ratio resulting in average increases of 3.6 to 4.8-fold for total sugars and sulfated sugars, as compared to conventional extraction. Extracts displayed improved antioxidant activities, yet maximum values were achieved under different optimum conditions of HHP processing, for example, 5–5.5 min, 300 MPa and 1 g of dry seaweed for yield. In conclusion, the optimal HHP technology conditions described in this paper enables to obtain enriched bioactive polysaccharide S. muticum extracts.
- A chemical study of yoghurt produced under isostatic pressure during storagePublication . Vieira, Patrícia; Pinto, Carlos A.; Goodfellow, Brian James; Gomes, Ana M.; Sousa, Sérgio; Machado, Manuela; Delgadillo, Ivonne; Saraiva, Jorge A.Yoghurt fermented under sub-lethal high pressure (10, 20, 30 and 40 MPa at 43 °C), and afterward placed under refrigeration (4 °C for 23 days) was studied and compared with yoghurt fermented at atmospheric pressure (0.1 MPa). For a deeper analysis, metabolite fingerprinting by nuclear magnetic resonance (NMR), sugars and organic acids assessment by high performance liquid chromatography (HPLC), total fatty acids (TFA) determination and quantification by gas chromatography with a flame ionization detector (GC-FID) were performed. Metabolomic analyses revealed that only 2,3-butanediol, acetoin, diacetyl and formate vary with the increase of pressure and probable relation with pressure influenced diacetyl reductase, acetoin reductase and acetolactate decarboxylase. Yoghurts fermented at 40 MPa had the lowest content in lactose (39.7 % of total sugar reduction) and the less content in TFA (56.1 %). Further research is of interest to understand more about fermentation processes under sub-lethal high pressure.
- Chemical-based methodologies approaches to extend the shelf life of fresh fish — a reviewPublication . Amaral, Renata A.; Pinto, Carlos A.; Lima, Vasco; Tavares, Jéssica; Martins, Ana P.; Fidalgo, Liliana G.; Silva, Ana M.; Gil, Maria M.; Teixeira, Paula; Barbosa, Joana; Barba, Francisco J.; Saraiva, Jorge A.Due to its characteristics, fresh fish is a highly perishable food with a very short shelf-life under refrigeration. Several methods have been introduced to slow down its deterioration, such as by means of oxygen depletion of the food package (vacuum packaging), or by changing the natural atmosphere that is in contact with the fresh fish (modified atmosphere packaging), or by the use of chemicals generally recognized as safe: such compounds can be directly applied (by dipping or spraying) or incorporated into packaging materials and slowly migrate to the product, exerting a hurdle effect against microbial development and lipid oxidation (active packaging). This review aims to cover the most recent advances in chemical-based approaches for fresh fish preservation, applied either singly or in combination. Vacuum packaging, modified atmosphere, and active packaging preservation methodologies are presented, along with the inclusion of chemical additives, such as organic acids and natural extracts, and their combination with icing systems. Advantages and disadvantages of these methodologies and their impact on fresh fish quality and shelf-life are discussed, reaching the conclusion that both are positively influenced overall. Indeed, the contribution of chemical-based strategies for fresh fish preservation is undeniable, and is expected to be a research topic of increasing interest in the future.
- Combined effect of pressure and temperature for yogurt productionPublication . Lopes, Rita P.; Mota, Maria J.; Sousa, Sérgio; Gomes, Ana M.; Delgadillo, Ivonne; Saraiva, Jorge A.Fermentation under non-conventional conditions has gained prominence in the last years, due to the possible process improvements. Fermentation under sub-lethal pressures is one of such cases, and may bring novel characteristics and features to fermentative processes and products. In this work, the effect of both pressure (10–100 MPa) and temperature (25–50 °C) on yogurt production fermentation kinetics was studied, as a case-study. Product formation and substrate consumption were evaluated over fermentation time and the profiles were highly dependent on the fermentation conditions used. For instance, the increase of pressure slowed down yogurt fermentation, but fermentative profiles similar to atmospheric pressure (0.1 MPa) were obtained at 10 MPa at almost all temperatures tested. Regarding temperature, higher fermentative rates were achieved at 43 °C for all pressures tested. Moreover, the inhibitory effect of pressure increased when temperature decreased, with complete inhibition of fermentation occurring at 50 MPa for 25–35 °C, contrasting to 43 °C where inhibition occurred only at 100 MPa. Therefore, an antagonistic effect seems to occur, since yogurt fermentation was slowed down by pressure increasing, on one hand, and by temperature decreasing, on the other hand. Additionally, some kinetic parameters were calculated and fermentation at 43 °C presented the best results for yogurt production, with lower fermentation times and higher lactic acid productivities. Interestingly, fermentation at 10 MPa/43 °C presented the optimal conditions, with improved yield and lactic acid production efficiency, when compared to fermentation at 0.1 MPa (efficiency of 75% at 10 MPa, against 40% at 0.1 MPa). As the authors are aware, this work gives the first insights about the simultaneous effect of pressure and temperature variation on a microbial fermentation process, which can be combined to modulate the metabolic activity of microorganisms during fermentation in order to improve the fermentative yields and productivities of the desired product.
- Combining high pressure and electric fields towards nannochloropsis oculata eicosapentaenoic acid-rich extractsPublication . Sousa, Sérgio; Carvalho, Ana P.; Pinto, Carlos A.; Amaral, Renata A.; Saraiva, Jorge A.; Pereira, Ricardo N.; Vicente, António A.; Freitas, Ana C.; Gomes, Ana M.Nannochloropsis oculata is naturally rich in eicosapentaenoic acid (EPA). To turn this microalga into an economically viable source for commercial applications, extraction efficiency must be achieved. Pursuing this goal, emerging technologies such as high hydrostatic pressure (HHP) and moderate electric fields (MEF) were tested, aiming to increase EPA accessibility and subsequent extraction yields. The innovative approach used in this study combined these technologies and associated tailored, less hazardous different solvent mixtures (SM) with distinct polarity indexes. Although the classical Folch SM with chloroform: methanol (PI 4.4) provided the highest yield concerning total lipids (166.4 mglipid/gbiomass), diethyl ether: ethanol (PI 3.6) presented statistically higher values in terms of EPA per biomass, corresponding to 1.3-fold increase. When SM were used in HHP and MEF, neither technology independently improved EPA extraction yields, although the sequential combination of technologies did result in 62% increment in EPA extraction. Overall, the SM and extraction methodologies tested (HHP—200 MPa, 21 °C, 15 min, followed by MEF processing at 40 °C, 15 min) enabled increased EPA extraction yields from wet N. oculata biomass. These findings are of high relevance for the food and pharmaceutical industries, providing viable alternatives to the “classical” extraction methodologies and solvents, with increased yields and lower environmental impact.
- Comparing different packaging conditions on quality stability of high-pressure treated Serra da Estrela cheeses during cold storagePublication . Inácio, Rita S.; Monteiro, Maria J. P.; Lopes-da-Silva, José A.; Gomes, Ana M. P.; Saraiva, Jorge A.Serra da Estrela cheese with a Protected Designation of Origin (PDO) is a traditional cheese that is wrapped in paper without vacuum. High-pressure processing (HPP), which requires vacuum packaging of the cheese, has been used for its cold pasteurization to overcome safety issues. In this study, two packaging systems were studied: non-vacuum greaseproof paper wrapping package and vacuum packaging in plastic film. Lactococci, lactobacilli, enterococci, and total mesophiles reached ca. 8 log cfu g−1 and 4–6 log cfu g−1 in control (unpasteurized) and HPP-treated cheeses, respectively, with no significant differences between packaging systems. Spoilage microorganisms' viable cell numbers were reduced to <3 log cfu g−1 (quantification limit) in HPP-treated cheeses, independently of the packaging system. Yeasts and molds reached >5 log cfu g−1 in non-vacuum paper-wrapped cheeses. A vacuum-packaging system enabled better control of cheese proteolysis, which was revealed to be closer to that of the original control cheese values at the end of the 10-month storage period. In addition, cheese stored under vacuum film packaging became harder than non-vacuum paper-wrapped cheeses at each time point. Overall, conventional non-vacuum paper wrapping is adequate for short storage periods (<3 months), but for long periods vacuum packaging in plastic film is preferable.
