Browsing by Author "Saeed, Wisha"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Effect of growth stages and lactic acid fermentation on anti-nutrients and nutritional attributes of spinach (Spinacia oleracea)Publication . Naseem, Adila; Akhtar, Saeed; Ismail, Tariq; Qamar, Muhammad; Sattar, Dur-e-shahwar; Saeed, Wisha; Esatbeyoglu, Tuba; Bartkiene, Elena; Rocha, João MiguelSpinach (Spinacia oleracea) is a winter-season green, leafy vegetable grown all over the world, belonging to the family Amaranthus, sub-family Chenopodiaceae. Spinach is a low-caloric food and an enormous source of micronutrients, e.g., calcium, folates, zinc, retinol, iron, ascorbic acid and magnesium. Contrarily, it also contains a variety of anti-nutritional factors, e.g., alkaloids, phytates, saponins, oxalates, tannins and many other natural toxicants which may hinder nutrient-absorption. This study was aimed at investigating the effect of fermentation on improving the nutrient-delivering potential of spinach and mitigating its burden of antinutrients and toxicants at three growth stages: the 1st growth stage as baby leaves, the 2nd growth stage at the coarse stage, and the 3rd growth stage at maturation. The results revealed the significant (p < 0.05) effect of fermentation on increasing the protein and fiber content of spinach powder from 2.53 to 3.53% and 19.33 to 22.03%, respectively, and on reducing total carbohydrate content from 52.92 to 40.52%; the effect was consistent in all three growth stages. A significant decline in alkaloids (6.45 to 2.20 mg/100 g), oxalates (0.07 mg/100 g to 0.02 mg/100 g), phytates (1.97 to 0.43 mg/100 g) and glucosinolates (201 to 10.50 µmol/g) was observed as a result of fermentation using Lactiplantibacillus plantarum. Fermentation had no impact on total phenolic content and the antioxidant potential of spinach, as evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays. This study proposes fermentation as a safer bioprocess for improving the nutrient-delivering potential of spinach, and suggests processed powders made from spinach as a cost-effective complement to existing plant proteins.
- Lactic acid fermentation ameliorates intrinsic toxicants in Brassica campestris L. leaves harvested at different growth stagesPublication . Younis, Muhammad; Akhtar, Saeed; Ismail, Tariq; Qamar, Muhammad; Sattar, Dur-e-shahwar; Saeed, Wisha; Mubarak, Mohammad S.; Bartkiene, Elena; Rocha, João MiguelBrassica campestris (syn. Brassica rapa) is often known as mustard and is grown worldwide owing to its health-promoting characteristics associated with the presence of nutrients and phytochemicals. Along with the nutritional components, B. campestris also contains anti-nutrients (phytates, oxalates, tannins, alkaloids, saponins) that can cause adverse severe health effects to consumers, including rashes, nausea, headaches, bloating and nutritional deficiencies. In the present study, heating (blanching) and fermentation (Lactiplantibacillus plantarum) treatments were applied to reduce the load of the anti-nutrients of B. campestris leaves harvested at three different growth stages: the first stage (fourth week), the second stage (sixth week) and the third stage (eighth week). Results revealed that fermentation treatment using Lp. plantarum increases the ash (5.4 to 6%), protein (9 to 10.4%) and fiber (9.6 to 10.7%) contents, whereas moisture (0.91 to 0.82%), fat (9.9 to 9.1%) and carbohydrate (64.5 to 64.2%) contents decreased among B. campestris samples, and the trend was similar for all three stages. Blanching and fermentation lead to the reduction in phytates (46, 42%), saponins (34, 49%), tannins (1, 10%), oxalates (15, 7%) and alkaloids (10, 6%), separately as compared to raw samples of B. campestris leaves. In contrast, fermentation had no considerable effect on phytochemical contents (total phenolic and total flavonoids) and antioxidant potential (DPPH and FRAP). The action of blanching followed by fermentation caused more decline in the aforementioned toxicants load as compared to blanching or fermentation alone. Structural modifications in blanching and the biochemical conversions in fermentation lead to enhanced stability of nutrients and antioxidant potential. Taken together, these findings suggest blanching followed by fermentation treatments as a reliable, cost-effective and safer approach to curtail the anti-nutrient load without affecting the proximate composition, phytochemical attributes and antioxidant activity.
- The comparative effect of lactic acid fermentation and germination on the levels of neurotoxin, anti-nutrients, and nutritional attributes of sweet blue pea (Lathyrus sativus L.)Publication . Arshad, Nimra; Akhtar, Saeed; Ismail, Tariq; Saeed, Wisha; Qamar, Muhammad; Özogul, Fatih; Bartkiene, Elena; Rocha, João MiguelGrass pea (Lathyrus sativus L.), an indigenous legume of the subcontinental region, is a promising source of protein and other nutrients of health significance. Contrarily, a high amount of β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP) and other anti-nutrients limits its wider acceptability as healthier substitute to protein of animal and plant origin. This study was aimed at investigating the effect of different processing techniques, viz. soaking, boiling, germination, and fermentation, to improve the nutrient-delivering potential of grass pea lentil and to mitigate its anti-nutrient and toxicant burden. The results presented the significant (p < 0.05) effect of germination on increasing the protein and fiber content of L. sativus from 22.6 to 30.7% and 15.1 to 19.4%, respectively. Likewise, germination reduced the total carbohydrate content of the grass pea from 59.1 to 46%. The highest rate of reduction in phytic acid (91%) and β-ODAP (37%) were observed in germinated grass pea powder, whereas fermentation anticipated an 89% reduction in tannin content. The lactic acid fermentation of grass pea increased the concentration of calcium, iron, and zinc from 4020 to 5100 mg/100 g, 3.97 to 4.35 mg/100 g, and 3.52 to 4.97 mg/100 g, respectively. The results suggest that fermentation and germination significantly (p < 0.05) improve the concentration of essential amino acids including threonine, leucine, histidine, tryptophan, and lysine in L. sativus powder. This study proposes lactic acid fermentation and germination as safer techniques to improve the nutrient-delivering potential of L. sativus and suggests processed powders of the legume as a cost-effective alternative to existing plant proteins.