Percorrer por autor "Pires, Carlos"
A mostrar 1 - 5 de 5
Resultados por página
Opções de ordenação
- Assessment of rhizospheric culturable bacteria of Phragmites australis and Juncus effusus from polluted sitesPublication . Pereira, Sofia I. A.; Pires, Carlos; Henriques, Isabel; Correia, António; Magan, Naresh; Castro, Paula M. L.This study aimed at the isolation and characterization of metal(loid)-tolerant bacteria from the rhizosphere of Phragmites australis and Juncus effusus plants growing in two long-term contaminated sites in Northern Portugal. Site 1 had higher contamination than Site 3. Bacteria were isolated using metal(loid)-supplemented (Cd, Zn, and As) media. Isolates were grouped by random amplified polymorphic DNA and identified by 16S rRNA gene sequencing. Strains were also examined for their metal(loid) tolerance. The counts of metal(loid)-tolerant bacteria were higher in Site 1 and ranged between log 7.17 CFU g(-1) soil in As-containing medium and log 7.57 CFU g(-1) soil in Zn-containing medium, while counts at Site 3 varied between log 5.33 CFU g(-1) soil in Cd-containing medium and log 6.97 CFUg(-1) soil in As-containing medium. The composition of bacterial populations varied between locations. In Site 1, the classes Actinobacteria (36%) and Bacilli (24%) were well represented, while in Site 3 strains were mainly affiliated to classes Actinobacteria (35%), 'y-Proteobacteria (35%), and 13-Proteobacteria (12%). The order of metal(loid) toxicity for the isolated strains was Cd > As > Zn. Overall, 10 strains grew at 500 mg Cd L-1, 1000 mg Zn L-1, and 500 mg As L-1, being considered the most metal(loid)-tolerant bacteria. These strains belonged to genera Cupriavidus, Burkholderia, Novosphingobium, Sphingo bacterium, Castellaniella, Mesorhizobium, Chryseobacterium, and Rhodococcus and were mainly retrieved from Site 1. The multiple metal(loid)-tolerant strains isolated in this study have potential to be used in bioremediation/phytoremediation.
- Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plantPublication . Marques, Ana P. G. C.; Pires, Carlos; Moreira, Helena; Rangel, António O. S. S.; Castro, Paula M. L.Zea mays, one of the most important cereals worldwide, is a plant not only with food and energy value, but also with phytoremediation potential. The use of plant growth promoting (PGP) rhizobacteria may constitute a biological alternative to increase crop yield and plant resistance to degraded environments. In search for PGP rhizobacteria strains, 6 bacterial isolates were isolated from a metal contaminated site, screened in vitro for their PGP characteristics and their effects on the growth of Z. mays were assessed. Isolates were identified as 3A10T, ECP37T, corresponding to Chryseobacterium palustre and Chryseobacterium humi, and 1ZP4, EC15, EC30 and 1C2, corresponding to strains within the genera Sphingobacterium, Bacillus, Achromobacter, and Ralstonia, respectively. All the bacterial isolates were shown to produce indole acetic acid, hydrogen cyanide and ammonia when tested in vitro for their plant growth promoting abilities, but only isolates 1C2, 1ZP4 and ECP37T have shown siderophore production. Their further application in a greenhouse experiment using Z. mays indicated that plant traits such as root and shoot elongation and biomass production, and nutrient status, namely N and P levels, were influenced by the inoculation, with plants inoculated with 1C2 generally outperforming the other treatments. Two other bacterial isolates, 1ZP4 and ECP37T also led to increased plant growth in the greenhouse. These 3 species, corresponding to strains within the genera Ralstonia (1C2), Sphingobacterium (1ZP4), and to a strain identified as C. humi (ECP37T) can thus be potential agents to increase crop yield in maize plants.
- Chryseobacterium palustre sp. nov. and Chryseobacterium humi sp. nov., isolated from industrially contaminated sedimentsPublication . Pires, Carlos; Carvalho, Maria F.; Marco, Paolo De; Magan, Naresh; Castro, Paula M. L.Two Gram-staining-negative bacterial strains, designated 3A10T and ECP37T, were isolated from sediment samples collected from an industrially contaminated site in northern Portugal. These two organisms were rod-shaped, non-motile, aerobic, catalase- and oxidase-positive and formed yellow colonies. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 1{omega}9c and iso-C17 : 0 3-OH. The G+C content of the DNA of strains 3A10T and ECP37T was 43 and 34 mol%, respectively. The major isoprenoid quinone of the two strains was MK-6. 16S rRNA gene sequence analysis revealed that strains 3A10T and ECP37T were members of the family Flavobacteriaceae and were related phylogenetically to the genus Chryseobacterium. Strain 3A10T showed 16S rRNA gene sequence similarity values of 97.2 and 96.6 % to the type strains of Chryseobacterium antarcticum and Chryseobacterium jeonii, respectively; strain ECP37T showed 97.3 % similarity to the type strain of Chryseobacterium marinum. DNA–DNA hybridization experiments revealed levels of genomic relatedness of <70 % between strains 3A10T and ECP37T and between these two strains and the type strains of C. marinum, C. antarcticum and C. jeonii, justifying their classification as representing two novel species of the genus Chryseobacterium. The names proposed for these organisms are Chryseobacterium palustre sp. nov. (type strain 3A10T =LMG 24685T =NBRC 104928T) and Chryseobacterium humi sp. nov. (type strain ECP37T =LMG 24684T =NBRC 104927T).
- Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applicationsPublication . Pires, Carlos; Franco, Albina R.; Pereira, Sofia I. A.; Henriques, Isabel; Correia, António; Magan, Naresh; Castro, Paula M. L.Heavy metal-contaminated soils are a serious environmental problem. Herein, the culturable heterotrophic bacterial community present on two metal(loid)-contaminated sites in the Northern Portugal was investigated. The bacterial counts ranged from 5.96 to 7.69 and 7.04 to 7.51 (log CFUg(-1) soil) in Sites 1 and 3, respectively. The bacterial population was predominantly composed of Firmicutes, Proteobacteria, and Actinobacteria on both sites. The most represented genera in Site 1 were Bacillus (41%) and Pseudomonas (27%), whereas Arthrobacter (21%) and Pseudomonas (13%) were the most represented genera in Site 3. Several bacterial isolates showed tolerance to high concentrations of metal(loid)s, suggesting that both contaminated sites are a valuable source of metal(loid)-tolerant bacteria, which may be further used in bioremediation and/or phytoremediation processes.
- Removal of heavy metals using different polymer matrixes as support for bacterial immobilisationPublication . Pires, Carlos; Marques, Ana P. G. C.; Guerreiro, António; Magan, Naresh; Castro, Paula M.L.Great attention is focused on the microbial treatment of metal contaminated environments. Three bacterial strains, 1C2, 1ZP4 and EC30, belonging to genera Cupriavidus, Sphingobacterium and Alcaligenes, respectively, showing high tolerance to Zn and Cd, up to concentrations of 1000 ppm, were isolated from a contaminated area in Northern Portugal. Their contribution to Zn and Cd removal from aqueous streams using immobilised alginate, pectate and a synthetic cross-linked polymer was assessed. In most cases, matrices with immobilised bacteria showed better metal removal than the non-inoculated material alone. For the immobilisation with all the polymers, 1C2 was the strain that increased the removal of Zn the most, whereas EC30 was the most promising for Cd removal, especially when combined with the synthetic polymer with up to a ca. 11-fold increase in metal removal when compared to the polymer alone. Removal of individual metals from binary mixtures showed that there was differential immobilisation. There was greater removal of Cd than Zn (removals up to 40% higher than those showed for Zn). The results show that metal contaminated environments constitute a reservoir of microorganisms resistant/tolerant to heavy metals that have the capacity to be exploited in bioremediation strategies. Capsule immobilisation of bacteria in the naturally occurring alginate and pectate and in a synthetic cross-linked polymer increased the Zn and Cd removal abilities from single and binary contaminated waters; the applications with the synthetic polymer were the most promising for Cd and Zn removal in single and binary mixtures.
