Browsing by Author "Nogueira, Mariana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Effect of drying and broccoli leaves incorporation on the nutritional quality of durum wheat pastaPublication . Drabińska, Natalia; Nogueira, Mariana; Ciska, Ewa; Jelén, HenrykPasta is a great vehicle for the incorporation of vegetable-derived ingredients to increase the consumption of the health-beneficial components originating from vegetables. Notably, by-products of vegetable processing can also serve as a rich source of phytochemicals. An important step in pasta processing is drying which can affect the content of bioactive compounds in pasta. This study aimed to evaluate the effect of drying on the nutritional quality and cooking properties of durum wheat pasta fortified with broccoli leaves. Pasta enriched with broccoli leaf powder (BLP) at 2.5% (B2.5) and 5% (B5), and control pasta without BLP (C), which differed in drying conditions: fresh pasta without drying (F), pasta dried at 50 degrees C for 8 h (L), and pasta dried at 80 degrees C for 3 h (H) were formulated. The obtained pasta products were analysed for the cooking properties (optimal cooking time, cooking loss, water absorption and swelling capacity); colour parameters; proximate composition; and contents of free amino acids (FAA), fatty acids and sugars. BLP significantly improved the contents of ash by up to 35 g/100 g, FAA and fatty acids to up to 1298 nmol/g dry matter (DM) and 16741 mu g/g DM, respectively, without compromising the cooking quality of pasta. Drying had a significant effect on fatty acids, which content in pasta processed at the highest temperature tested decreased. From the nutritional point of view, the low-temperature drying seems to be an interesting method for pasta preparation, with the highest content of FAA, fatty acids, especially unsaturated ones, and the lowest content of sugar. However, at the same time, the dried pasta products were characterised by greater cooking loss approximating 10%.
- Valorisation of broccoli by-products: technological, sensory and flavour properties of durum pasta fortified with broccoli leaf powderPublication . Drabińska, Natalia; Nogueira, Mariana; Szmatowicz, BeataThe aim of this study was to evaluate the effect of broccoli leaf powder (BLP) incorporation on the technological properties, sensory quality and volatile organic compounds (VOCs) of durum wheat pasta. Incorporation of BLP increased cooking loss; however, all pasta samples were found to be in the acceptable range of 8 g/100 g. The addition of BLP decreased optimal cooking time and water absorption but increased the swelling index. Firmness and total shearing force decreased with increased BLP content. The obtained pasta was greener than the control, with a higher content of minerals, and an increasing tendency with respect to protein was observed. The VOC profile of enriched pasta was richer and contained compounds typical of broccoli (e.g., dimethyl sulphide), affecting its aroma. The sensory evaluation results indicate that the addition of BLP did not affect the overall acceptance of pasta. Up to 5% BLP content afforded an interesting, more nutritious pasta without compromising its technological and sensory quality.
- Variation in the accumulation of phytochemicals and their bioactive properties among the aerial parts of cauliflowerPublication . Drabińska, Natalia; Jeż, Maja; Nogueira, MarianaVegetables from the Brassicaceae family are excellent sources of bioactive phytochemicals and may reduce the risk of chronic diseases. Variation of phytochemicals in the edible part of cauliflower is known. However, information about the distribution of bioactive and nutritive compounds as well as antioxidant activity among aerial organs of cauliflower is unavailable. Therefore, this study aimed to evaluate the distribution of glucosinolates (GLS), phenolics, flavonoids, chloro-phylls, nutritive compounds and antioxidant capacity between the aerial parts of the common variety of cauliflower and to evaluate whether these changes contribute to the differences in the antioxidant capacity between the plant organs. Our study showed that all the aerial organs of cauliflower are a rich source of health-promoting bioactive compounds, including GLS, phenolics and flavonoids, exhibiting antioxidant capacity. The highest contents of phytochemicals and the highest antioxidant capacity were found in leaves. Cauliflower organs were also found to be rich in nutritive compounds, including minerals, proteins and amino acids. Our study showed that the non-edible organs, such as stems and leaves, being neglected parts of cauliflower, if not consumed as the main ingredient, can be used as additives for developing new, functional foodstuff.