Repository logo
 
No Thumbnail Available
Publication

Forecasting stock-return volatility in the time-frequency domain

Use this identifier to reference this record.

Abstract(s)

Este estudo foca nos modelos autorregressivos de heterocedasticidade condicional, em especial nos modelos GARCH. A amostra principal usa dados do retorno do índice do S&P500 ajustados a divisão e dividendos de 1990 a 2008, usando uma janela fora da amostra de 2001 até ao final da amostra. O objetivo principal é analisar o desempenho das previsões do modelo num domínio tempo-frequência e, em seguida, compará-los com resultados em um cenário de domínio de tempo. Para fazer uma análise de domínio tempo-frequência, usamos técnicas de wavelets para decompor as séries temporais S&P500 originais em diferentes frequências, cada uma delas originalmente configurada no domínio do tempo. Em última análise, o objetivo é ver se a decomposição com wavelets traz um desempenho aprimorado na previsão/modelagem da volatilidade, observando a função de perdas de previsão de Quasi-Verossimilhança (QL), bem como os índices médios de perdas de previsão ao quadrado (MSFE). Embora a decomposição com wavelets ajude a capturar componentes periódicos ocultos das séries temporais originais, os resultados de domínio de frequência em termos de função de perda (QL e MSFE) não superam o resultado original do domínio do tempo para qualquer frequência dada. No entanto, a maioria das informações para a volatilidade futura é capturada em poucas frequências da série temporal do S&P500, especialmente, na parte de alta frequência dos espectros, representando horizontes de investimento muito curtos.
This research focuses on generalized autoregressive conditional heteroskedasticity (GARCH) model. The main sample uses daily split-adjusted and dividend-adjusted log-return data of the S&P500 index ranging from 1990 to 2008, using an out-of-sample window from 2001 until the end of the sample. The main goal is to analyze the performance of the model forecasts in a time-frequency domain and then to compare them with results in a time-domain scenario. To make a time-frequency domain analysis, this research uses wavelets techniques to decompose the original S&P500 time series into different frequencies brands, each of them originally set in time-domain. Ultimately, the aim is to see if the wavelet decomposition brings an enhanced performance on forecasting/modelling volatility by looking at the Quasi-Likelihood forecasting losses (QL) as well as the mean squared forecasting losses ratios (MSFE). Although the wavelet decomposition helps to capture hidden periodic components of the original time-series, frequency-domain results in terms of loss function (QL e MSFE) don’t outperform the original time-domain result for any given frequency. Nevertheless, most of the information for future volatility is captured in few frequencies of the S&P500 time-series, specially in the high-frequency part of the spectra, representing very short investment horizons.

Description

Keywords

Volatilidade GARCH Decomposição com wavelets Função de perdas Volatility Wavelet decomposition Loss function

Pedagogical Context

Citation

Research Projects

Organizational Units

Journal Issue