| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 1.13 MB | Adobe PDF |
Autores
Orientador(es)
Resumo(s)
Numa realidade em que a estratégia de marketing das empresas se concentra em construir um relacionamento de longo prazo com os seus clientes, é crucial identificar quem são os clientes mais fiéis à empresa que responderão melhor a esta abordagem. Para construir uma relação bidirecional com os clientes, as empresas necessitam de sistemas de informação que as identifiquem e suportem. Estes sistemas, atualmente, são de base tecnológica e uniformizam toda a informação necessária para a construção de uma dinâmica de Customer Relationship Management integrando, por vezes, dados com origem em diferentes aplicações. Este facto permite a emergência de ensaios de aplicação de algoritmos de data mining para, entre outras, fazer análises de mercado.
Seguindo uma estrutura metodológica sob o formato de estudo de caso, foi realizada uma investigação exploratória e quantitativa aos 6180 clientes do Mercadão entre os meses de outubro de 2017 e de janeiro de 2019. A empresa Fonte Online criou o Mercadão onde vende online produtos de lojas parceiras.
O presente estudo apresenta uma aplicação de técnicas de data mining no contexto de negócio do Mercadão. Através da construção de uma análise cluster foi possível segmentar os clientes com recurso ao método Two Step, e numa perspetiva de targeting foi realizada uma classificação do Customer Lifetime Value dos clientes através do método RFM. A taxa de retenção de clientes é uma medida da performance da estratégia de marketing seguida no Mercadão.
Este estudo revelou os clusters de clientes do Mercadão e quais as características que os definem. Os grupos de clientes identificados foram classificados de acordo com o seu Customer Lifetime Value no sentido de perceber quais são os clientes mais fiéis ao Mercadão. A empresa dispõe assim, de um mecanismo facilitador da construção de um modelo de clustering que pode ser usado de forma sistemática pela gestão.
In a reality where the company's marketing strategy focuses on building a long-term relationship with its customers, it is crucial to identify who are the ones most loyal to the company, that will better respond to this approach. To build a bidirectional relationship with customers, companies need information systems to identify and support them. These systems are currently technology-based and standardize all the information necessary to build a Customer Relationship Management dynamic, sometimes integrating data from different applications. This fact allows the emergence of data mining algorithm application tests to, among others, perform market analysis. Following a methodological structure under the format of a case study, an exploratory and quantitative investigation was carried out among the 6180 Mercadão customers between October 2017 and January 2019. Fonte Online created Mercadão to sell online products of their partners. The present study presents an application of data mining techniques in the business context of Mercadão. The created cluster analysis allowed the segmentation of clients using the Two Step method and, in a targeting perspective a classification of Customer Lifetime Value of the clients was carried out using the RFM method. The customer retention rate is a measure of the performance of the marketing strategy followed by Mercadão. This study revealed the clusters of customers of Mercadão and the characteristics that define them. The customer groups identified were classified according to their Customer Lifetime Value, aiming to highlight which customers are most loyal to Mercadão. The company thus has a mechanism that facilitates the construction of a model of clustering that can be used in a systematic way by management.
In a reality where the company's marketing strategy focuses on building a long-term relationship with its customers, it is crucial to identify who are the ones most loyal to the company, that will better respond to this approach. To build a bidirectional relationship with customers, companies need information systems to identify and support them. These systems are currently technology-based and standardize all the information necessary to build a Customer Relationship Management dynamic, sometimes integrating data from different applications. This fact allows the emergence of data mining algorithm application tests to, among others, perform market analysis. Following a methodological structure under the format of a case study, an exploratory and quantitative investigation was carried out among the 6180 Mercadão customers between October 2017 and January 2019. Fonte Online created Mercadão to sell online products of their partners. The present study presents an application of data mining techniques in the business context of Mercadão. The created cluster analysis allowed the segmentation of clients using the Two Step method and, in a targeting perspective a classification of Customer Lifetime Value of the clients was carried out using the RFM method. The customer retention rate is a measure of the performance of the marketing strategy followed by Mercadão. This study revealed the clusters of customers of Mercadão and the characteristics that define them. The customer groups identified were classified according to their Customer Lifetime Value, aiming to highlight which customers are most loyal to Mercadão. The company thus has a mechanism that facilitates the construction of a model of clustering that can be used in a systematic way by management.
Descrição
Palavras-chave
Informação Clustering Customer lifetime value Retenção Information Retention
