Logo do repositório
 
Publicação

Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management

dc.contributor.authorMoor, Bram J. de
dc.contributor.authorGijsbrechts, Joren
dc.contributor.authorBoute, Robert N.
dc.date.accessioned2024-01-11T08:47:41Z
dc.date.available2024-09-01T00:30:20Z
dc.date.issued2022-09-01
dc.description.abstractDeep reinforcement learning (DRL) has proven to be an effective, general-purpose technology to develop ‘good’ replenishment policies in inventory management. We show how transfer learning from existing, well-performing heuristics may stabilize the training process and improve the performance of DRL in inventory control. While the idea is general, we specifically implement potential-based reward shaping to a deep Q-network algorithm to manage inventory of perishable goods that, cursed by dimensionality, has proven to be notoriously complex. The application of our approach may not only improve inventory cost performance and reduce computational effort, the increased training stability may also help to gain trust in the policies obtained by black box DRL algorithms.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doi10.1016/j.ejor.2021.10.045pt_PT
dc.identifier.eid85119188665
dc.identifier.issn0377-2217
dc.identifier.urihttp://hdl.handle.net/10400.14/43565
dc.identifier.wos000793723100010
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.subjectDeep reinforcement learningpt_PT
dc.subjectInventorypt_PT
dc.subjectPerishable inventory managementpt_PT
dc.subjectReward shapingpt_PT
dc.subjectTransfer learningpt_PT
dc.titleReward shaping to improve the performance of deep reinforcement learning in perishable inventory managementpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage545pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage535pt_PT
oaire.citation.titleEuropean Journal of Operational Researchpt_PT
oaire.citation.volume301pt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
39282916.pdf
Tamanho:
1.52 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
3.44 KB
Formato:
Item-specific license agreed upon to submission
Descrição: