Logo do repositório
 
A carregar...
Miniatura
Publicação

Predicting consumer ad preferences using physiological monitoring and AI

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
140022300.pdf771.05 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

This policy paper explores how combining neurophysiological tools—Electrodermal Activity (EDA) and Facial Expression Analysis (FEA)—with machine learning (ML) enhances the prediction of consumer preferences in advertising, addressing the biases of traditional self-report methods. Analyzing responses from 37 participants to various cosmetic ads revealed that emotions like joy and disgust significantly influenced ad preference, with the Random Forest ML model achieving high predictive accuracy. Explainable AI (XAI) identified key features such as attention and engagement, offering marketers actionable insights. The findings suggest that integrating neurophysiological data with AI can improve advertising strategies, targeting, and consumer engagement.

Descrição

Palavras-chave

Contexto Educativo

Citação

Marques, J. A. L., Neto, A. C., Silva, S. C., & Bigne, E. (2024, Nov). Predicting consumer ad preferences using physiological monitoring and AI. Universidade Católica Portuguesa. https://doi.org/10.34632/b865755b-88a2-4aeb-a0fb-7ba0df58a1e9

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Universidade Católica Portuguesa

Licença CC

Sem licença CC

Métricas Alternativas