| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 771.05 KB | Adobe PDF |
Orientador(es)
Resumo(s)
This policy paper explores how combining neurophysiological tools—Electrodermal Activity (EDA) and Facial Expression Analysis (FEA)—with machine learning (ML) enhances the prediction of consumer preferences in advertising, addressing the biases of traditional self-report methods. Analyzing responses from 37 participants to various cosmetic ads revealed that emotions like joy and disgust significantly influenced ad preference, with the Random Forest ML model achieving high predictive accuracy. Explainable AI (XAI) identified key features such as attention and engagement, offering marketers actionable insights. The findings suggest that integrating neurophysiological data with AI can improve advertising strategies, targeting, and consumer engagement.
Descrição
Palavras-chave
Contexto Educativo
Citação
Marques, J. A. L., Neto, A. C., Silva, S. C., & Bigne, E. (2024, Nov). Predicting consumer ad preferences using physiological monitoring and AI. Universidade Católica Portuguesa. https://doi.org/10.34632/b865755b-88a2-4aeb-a0fb-7ba0df58a1e9
Editora
Universidade Católica Portuguesa
Coleções
Licença CC
Sem licença CC
