Logo do repositório
 
Publicação

Enhancing optimization planning models for health human resources management with foresight

dc.contributor.authorAmorim-Lopes, Mário
dc.contributor.authorOliveira, Mónica
dc.contributor.authorRaposo, Mariana
dc.contributor.authorCardoso-Grilo, Teresa
dc.contributor.authorAlvarenga, António
dc.contributor.authorBarbas, Marta
dc.contributor.authorAlves, Marco
dc.contributor.authorVieira, Ana
dc.contributor.authorBarbosa-Póvoa, Ana
dc.date.accessioned2024-02-15T14:40:35Z
dc.date.available2024-02-15T14:40:35Z
dc.date.issued2021-09
dc.description.abstractAchieving a balanced healthcare workforce requires health planners to adjust the supply of health human resources (HHR). Mathematical programming models have been widely used to assist such planning, but the way uncertainty is usually considered in these models entails methodological and practical issues and often disregards radical yet plausible changes to the future. This study proposes a new socio-technical methodology to factor in uncertainty over the future within mathematical programming modelling. The methodological approach makes use of foresight and scenario planning concepts to build tailor-made scenarios and scenario fit input parameters, which are then used within mathematical programming models. Health stakeholders and experts are engaged in the scenario building process. Causal map modelling and morphological analysis are adopted to digest stakeholders and experts’ information about the future and give origin to contrasting and meaningful scenarios describing plausible future. These scenarios are then adjusted and validated by stakeholders and experts, who then elicit their best quantitative estimates for coherent combinations of input parameters for the mathematical programming model under each scenario. These sets of parameters for each scenario are then fed to the mathematical programming model to obtain optimal solutions that can be interpreted in light of the meaning of the scenario. The proposed methodology has been applied to a case study involving HHR planning in Portugal, but its scope far extends HHR planning, being especially suited for addressing strategic and policy planning problems that are sensitive to input parameters.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doi10.1016/j.omega.2020.102384pt_PT
dc.identifier.eid85098079970
dc.identifier.issn0305-0483
dc.identifier.issn000705093500009
dc.identifier.urihttp://hdl.handle.net/10400.14/43979
dc.identifier.wos000705093500009
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectForesightpt_PT
dc.subjectHealth human resourcespt_PT
dc.subjectMathematical programmingpt_PT
dc.subjectPlanningpt_PT
dc.subjectScenario planningpt_PT
dc.subjectUncertainty modellingpt_PT
dc.titleEnhancing optimization planning models for health human resources management with foresightpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.titleOmega (United Kingdom)pt_PT
oaire.citation.volume103pt_PT
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT

Ficheiros

Principais
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
32025793.pdf
Tamanho:
4.3 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
3.44 KB
Formato:
Item-specific license agreed upon to submission
Descrição: