Repository logo
 
Publication

Parametric models for distributional data

dc.contributor.authorBrito, Paula
dc.contributor.authorSilva, A. Pedro Duarte
dc.date.accessioned2025-03-27T18:08:18Z
dc.date.available2025-03-27T18:08:18Z
dc.date.issued2025-03-10
dc.description.abstractWe present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance–covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.eng
dc.identifier.doi10.1007/s11634-025-00624-x
dc.identifier.eid86000521435
dc.identifier.issn1862-5347
dc.identifier.urihttp://hdl.handle.net/10400.14/52841
dc.identifier.wos001440802100001
dc.language.isoeng
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAnalysis of variance
dc.subjectDiscriminant analysis
dc.subjectHistogram data
dc.subjectSymbolic data
dc.titleParametric models for distributional dataeng
dc.typeresearch article
dspace.entity.typePublication
oaire.citation.titleAdvances in Data Analysis and Classification
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
116476417.pdf
Size:
653.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.44 KB
Format:
Item-specific license agreed upon to submission
Description: