| Nome: | Descrição: | Tamanho: | Formato: | |
|---|---|---|---|---|
| 951.7 KB | Adobe PDF |
Orientador(es)
Resumo(s)
Tendo como mote o estudo do desenvolvimento de um novo modelo de negócio, disruptivo pelo modo inovador utilizado para determinar o risco associado a um seguro, o presente trabalho pretende fornecer um contributo para o conhecimento existente sobre o tema. O processo de transformação digital que enfrentamos atualmente apresenta novas oportunidades às empresas que pretendem apostar em novas soluções e na diferenciação nas suas áreas de negócio. Este estudo está, assim, assente na aplicação dos padrões de consumo alimentares por forma a que possam resultar em benefícios para o consumidor, através de descontos associados ao prémio de um seguro de saúde ou de vida. O modelo proposto por esta investigação sugere uma metodologia de classificação do cabaz de consumo alimentar existente no retalhista, capaz de ser aplicado e replicado para todas as transações realizadas. A definição de uma métrica que classifique o cabaz alimentar do cliente, considerando a proporção do produto classificado bem como o agregado familiar, permite a customização do prémio consoante o perfil do cliente. O estudo desenvolvido inerente à classificação das categorias alimentares dos retalhistas apresenta 44% dos produtos como saudáveis. Em contraste, a análise em Power BI Desktop de uma amostra aleatória, evidencia que 37% dos produtos obtiveram uma classificação saudável, sendo que considerando a repetição da compra pelos clientes durante o período de análise, o peso destes produtos representa 51% do total.
Taking as its motto the study of the development of a new business model, disruptive by the innovative way used to evaluate the risk associated with an insurance, the present study intends to contribute to the existing knowledge on the subject. The digital transformation process that we are facing today presents new opportunities for companies that want to invest on new solutions and differentiation in their business area. Therefore, this study analyses the impact of the discounts associated with the premium of health or life insurance in consumer’s benefits through food consumption patterns. The proposed model presents a classification methodology of the food consumption basket existing in the retailer which is capable to be applied and replicated for all transactions. Taking into account the proportion of the classified product as well as the household, the definition of a metric that categorizes the client's food basket allows the customization of the premium according to the client's profile. The study argued in this dissertation settles that 44% of the retailer’s food are classified as healthy. In contrast, the analysis of a random sample through Power BI Desktop reveals that 37% of the products obtained a healthy classification. Despite the recurrence of the purchase by the customers during the period of analysis, the weight of these products represents 51% of the total.
Taking as its motto the study of the development of a new business model, disruptive by the innovative way used to evaluate the risk associated with an insurance, the present study intends to contribute to the existing knowledge on the subject. The digital transformation process that we are facing today presents new opportunities for companies that want to invest on new solutions and differentiation in their business area. Therefore, this study analyses the impact of the discounts associated with the premium of health or life insurance in consumer’s benefits through food consumption patterns. The proposed model presents a classification methodology of the food consumption basket existing in the retailer which is capable to be applied and replicated for all transactions. Taking into account the proportion of the classified product as well as the household, the definition of a metric that categorizes the client's food basket allows the customization of the premium according to the client's profile. The study argued in this dissertation settles that 44% of the retailer’s food are classified as healthy. In contrast, the analysis of a random sample through Power BI Desktop reveals that 37% of the products obtained a healthy classification. Despite the recurrence of the purchase by the customers during the period of analysis, the weight of these products represents 51% of the total.
Descrição
Palavras-chave
Semáforo nutricional InsurTech Padrão de consumo alimentar Seguro ramo vida Nutritional traffic light Food consumption patterns Life insurance
