Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalencePublication . Pärnänen, Katariina M. M.; Narciso-da-Rocha, Carlos; Kneis, David; Berendonk, Thomas U.; Cacace, Damiano; Do, Thi Thuy; Elpers, Christian; Fatta-Kassinos, Despo; Henriques, Isabel; Jaeger, Thomas; Karkman, Antti; Martinez, Jose Luis; Michael, Stella G.; Michael-Kordatou, Irene; O’Sullivan, Kristin; Rodriguez-Mozaz, Sara; Schwartz, Thomas; Sheng, Hongjie; Sørum, Henning; Stedtfeld, Robert D.; Tiedje, James M.; Giustina, Saulo Varela Della; Walsh, Fiona; Vaz-Moreira, Ivone; Virta, Marko; Manaia, Célia M.Integrated antibiotic resistance (AR) surveillance is one of the objectives of the World Health Organization global action plan on antimicrobial resistance. Urban wastewater treatment plants (UWTPs) are among the most important receptors and sources of environmental AR. On the basis of the consistent observation of an increasing north-to-south clinical AR prevalence in Europe, this study compared the influent and final effluent of 12 UWTPs located in seven countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway). Using highly parallel quantitative polymerase chain reaction, we analyzed 229 resistance genes and 25 mobile genetic elements. This first trans-Europe surveillance showed that UWTP AR profiles mirror the AR gradient observed in clinics. Antibiotic use, environmental temperature, and UWTP size were important factors related with resistance persistence and spread in the environment. These results highlight the need to implement regular surveillance and control measures, which may need to be appropriate for the geographic regions.
- Inter-laboratory calibration of quantitative analyses of antibiotic resistance genesPublication . Rocha, Jaqueline; Cacace, Damiano; Kampouris, Ioannis; Guilloteau, Hélène; Jäger, Thomas; Marano, Roberto B.M.; Karaolia, Popi; Manaia, Célia M.; Merlin, Christophe; Fatta-Kassinos, Despo; Cytryn, Eddie; Berendonk, Thomas U.; Schwartz, ThomasAntibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are widely distributed in the environment where they represent potential public health threats. Quantitative PCR (qPCR) is a suitable approach to detect and quantify ARGs in environmental samples. However, the comparison of gene quantification data between different laboratories is challenging since the data are predominantly obtained under non-harmonized conditions, using different qPCR protocols. This study aimed at carrying out an inter-laboratory calibration in order to assess the variability inherent to the qPCR procedures for quantification of ARGs. With this aim, samples of treated wastewater collected in three different countries were analysed based on common DNA extract pools and identical protocols as well as distinct equipment, reagents batches, and operators. The genes analysed were the 16S rRNA, vanA, blaTEM, qnrS, sul1, blaCTXM-32 and intI1 and the artificial pNORM1 plasmid containing fragments from the seven targeted genes was used as a reference. The 16S rRNA gene was the most abundant, in all the analysed samples, followed by intI1, sul1, qnrS, and blaTEM, while blaCTXM-32 and vanA were below the limit of quantification in most or all the samples. For the genes 16S rRNA, sul1, intI1, blaTEM and qnrS the inter-laboratory variation was below 28% (3–8%, 6–18%, 8–21%, 10–24%, 15–28%, respectively). While it may be difficult to fully harmonize qPCR protocols due to equipment, reagents and operator variations, the inter-laboratory calibration is an adequate and necessary step to increase the reliability of comparative data on ARGs abundance in different environmental compartments and/or geographic regions.
- High throughput analysis of integron gene cassettes in wastewater environmentsPublication . Gatica, Joao; Tripathi, Vijay; Green, Stefan; Manaia, Célia M.; Berendonk, Thomas; Cacace, Damiano; Merlin, Christophe; Kreuzinger, Norbert; Schwartz, Thomas; Fatta-Kassinos, Despo; Rizzo, Luigi; Schwermer, Carsten U.; Garelick, Hemda; Jurkevitch, Edouard; Cytryn, EddieIntegrons are extensively targeted as a proxy for anthropogenic impact in the environment. We developed a novel high-throughput amplicon sequencing pipeline that enables characterization of thousands of integron gene cassette-associated reads, and applied it to acquire a comprehensive overview of gene cassette composition in effluents from wastewater treatment facilities across Europe. Between 38 100 and 172 995 reads per-sample were generated and functionally characterized by screening against nr, SEED, ARDB and β-lactamase databases. Over 75% of the reads were characterized as hypothetical, but thousands were associated with toxin-antitoxin systems, DNA repair, cell membrane function, detoxification and aminoglycoside and β-lactam resistance. Among the reads characterized as β-lactamases, the carbapenemase blaOXA was dominant in most of the effluents, except for Cyprus and Israel where blaGES was also abundant. Quantitative PCR assessment of blaOXA and blaGES genes in the European effluents revealed similar trends to those displayed in the integron amplicon sequencing pipeline described above, corroborating the robustness of this method and suggesting that these integron-associated genes may be excellent targets for source tracking of effluents in downstream environments. Further application of the above analyses revealed several order-of-magnitude reductions in effluent-associated β-lactamase genes in effluent-saturated soils, suggesting marginal persistence in the soil microbiome.
- Antibiotic resistance genes in treated wastewater and in the receiving water bodies: a pan-European survey of urban settingsPublication . Cacace, Damiano; Fatta-Kassinos, Despo; Manaia, Célia M.; Cytryn, Eddie; Kreuzinger, Norbert; Rizzo, Luigi; Karaolia, Popi; Schwartz, Thomas; Alexander, Johannes; Merlin, Christophe; Garelick, Hemda; Schmitt, Heike; Vries, Daisy de; Schwermer, Carsten U.; Meric, Sureyya; Ozkal, Can Burak; Pons, Marie-Noelle; Kneis, David; Berendonk, Thomas U.There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified blaOXA-58 as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water.