Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Nanostructures of whey proteins for encapsulation of food ingredientsPublication . Ramos, Oscar L.; Pereira, Ricardo N.; Simões, Lívia S.; Madalena, Daniel A.; Rodrigues, Rui M.; Teixeira, José A.; Vicente, António A.The most current and high-level research is being taken on the use of nanoscience and nanotechnology due to its varied application in numerous fields of science. Food nanotechnology, and in particular, the development and application of bio-based nanostructures are an emerging area having a high potential to engender new products and processes in the food industry. This chapter intends to discuss whey protein-based nanostructured systems (i.e., whey protein isolate, whey protein concentrate, β-lactoglobulin, and α-lactalbumin) for encapsulation of food ingredients. These protein nanostructures have unique properties, such as a high nutritional value, GRAS nature, gelling capability, and can be easily prepared and controlled. They have also the ability to conjugate a large variety of food ingredients (e.g., antioxidants, vitamins, minerals, flavors, and odors) via amino groups or ionic and hydrophobic interactions. This behavior will prevent the degradation of sensitive bioactives, while permitting a site-specific action and controlled delivery rate due to the swelling behavior of the gel in reaction to external and physical stimuli such as temperature, enzymes, pH, or ionic strength), thus contributing to an improved bioavailability of such ingredients. The potential of whey protein nanostructures for encapsulation and controlled delivery of food ingredients will be addressed in a critical manner in this chapter. Moreover, various techniques used for their nanoencapsulation and evaluation of their stability during storage will also be discussed. The behavior and bioavailability of whey nanostructures and their associated/encapsulated food ingredients will be discussed using insights from in vitro and in vivo gastrointestinal systems together with potential cytotoxicity, cellular uptake, and allergenicity via in vitro cell lines. Finally, examples of such nanostructures applied in food matrices will be described, as well as the main challenges for their commercial use.
- Effect of composition of commercial whey protein preparations upon gelation at various pH valuesPublication . Ramos, Óscar S.; Pereira, Joana O.; Silva, Sara I.; Amorim, Maria M.; Fernandes, João C.; Lopes-da-Silva, José A.; Pintado, Manuela E.; Malcata, F. XavierThe major goal of this research effort was to comprehensively characterize various whey protein products available in the market — including one whey protein isolate (WPI) and three whey protein concentrates (two forms of WPC 80, and WPC 50), with regard to the effects of specific components (e.g. lecithin and minerals) and concentration of β-lactoglobulin (β-Lg) and α-lactalbumin upon thermal and gelation properties at various pH values (using micro differential scanning calorimetry, μDSC, and oscillatory rheometry). At pH values far from the isoelectric point of whey proteins, denaturation and aggregation appeared as one single endothermic peak in the corresponding μDSC heating thermograms, for WPI and both WPC 80; however, they appeared as separate transitions at pH 5. Acidic conditions increased the temperature of occurrence of the dominant endothermic transition associated to β-Lg, thus increasing the thermal stability of WPI, WPC 80A and WPC 80B. Gelation took place at the lowest temperature when pH was set at 5. WPI, WPC 80A and WPC 80B exhibited the highest G′ values at pH 5 — whereas WPI led to stronger gels than WPC, irrespective of pH. In the case of WPC 50, gelation did not occur at all.
- Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variablesPublication . Simões, Lívia S.; Araújo, João F.; Vicente, António A.; Ramos, Oscar L.β-lactoglobulin (β-Lg) is the major protein fraction of bovine whey serum and its principal gelling agent. Its gelation capacity enables conformational changes associated with protein-protein interactions that allow the design of structures with different properties and morphologies. Thus, the aim of this work was to successfully use β-Lg, purified from a commercial whey protein isolate, to develop food-grade micro- (with diameters between 200 and 300 nm) and nano- (with diameters ≤ 100 nm) structures. For this purpose, the phenomena involved in β-Lg gelation were studied under combined effects of concentrations (from 5 to 15 mg mL−1), heating temperature (from 60 to 80 °C) and heating time (from 5 to 25 min) for pH values of 3, 4, 6 and 7. The effects of such conditions on β-Lg structures were evaluated and the protein was fully characterized in terms of size, polydispersity index (PDI) and surface charge (by dynamic light scattering – DLS), morphology (by transmission electron microscopy - TEM) and conformational structure (circular dichroism, intrinsic and extrinsic fluorescence). Results have shown that β-Lg nanostructures were formed at pH 3 (with diameters between 12.1 and 22.3 nm) and at 7 (with diameters between 8.9 and 35.3 nm). At pH 4 structures were obtained at macroscale (i.e., ≥ 6 μm) for all β-Lg concentrations when heated at 70 and 80 °C, independent of the time of heating. For pH 6, it was possible to obtain β-Lg structures either at micro- (245.0 – 266.4 nm) or nanoscale (≤ 100 nm) with the lowest polydispersity (PDI) values (≤ 0.25), in accordance with TEM analyses, for heating at 80 °C for 15 min. Intrinsic and extrinsic fluorescence data and far-UV circular dichroism spectra measurements revealed conformational changes on β-Lg structure that support these evidences. A strict control of the physical and environmental conditions is crucial for developing β-Lg structures with the desired characteristics, thus calling for the understanding of the mechanisms of protein aggregation and intermolecular interaction when designing β-Lg structures with novel functionalities.