Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Quantification of 3-deoxyglucosone (3DG) as an aging marker in natural and forced aged winesPublication . Oliveira, Carla M.; Santos, Sónia A. O.; Silvestre, Armando J. D.; Barros, António S.; Ferreira, António César S.; Silva, Artur M. S.The Maillard reaction product 3-deoxyglucosone (3DG) was quantified in wines, by high-performance liquid chromatography-mass spectrometry analysis after derivatization with ortho-phenylenediamine. Both sweet red Port wines and dry white wines were analysed during natural and forced aging. In natural aging, and for dry white wines, 3DG is negatively correlated to age (r = −0.939), while for sweet red Port wines, 3DG is positively correlated to age (r = 0.782). The same tendency was observed during a wine forced aging protocol. For a dry white wine, with higher levels of α-amino acids, 3DG is consumed (kconsumption 0.077–0.098 day−1) along the time protocol, while for a sweet red Port wine, with lower levels of α-amino acids, an accumulation of 3DG is observed with time (kformation 0.041–0.060 day−1). These results suggest that 3DG content can be used as an aging marker, as it has discriminated dry white and sweet red Port wines from different ages and cultivars. Analysis of wine-model solutions allowed verifying that the fructose content has a higher effect on 3DG formation than glucose, as well as that an increase on amino acids content does not lead to an increase of 3DG yields.
- Quinones as Strecker degradation reagents in wine oxidation processesPublication . Oliveira, Carla Maria; Santos, Sónia A. O.; Silvestre, Armando J. D.; Barros, António S.; Ferreira, António César Silva; Silva, Artur M. S.The Strecker aldehydes formed during the reaction between α-amino acids (phenylalanine or methionine) and either gallic acid, caffeic acid or (+)-catechin ortho-quinones were evaluated in wine-model systems. It was demonstrated that phenylacetaldehyde was formed by quinone intermediates at wine pH. The highest amounts of phenylacetaldehyde during the 10days of experiment (69±5µg/L/day; 7x>Control) were obtained from (+) catechin, followed by gallic acid (61±4µg/L/day; 6x>Control) and caffeic acid (41±4µg/L/day; 4x>Control). The intermediate structures delivered from the reaction of ortho-quinones with α-amino acids were demonstrated by MSn.
- The Health-Promoting Potential of Salix spp. Bark Polar Extracts: Key Insights on Phenolic Composition and In Vitro Bioactivity and BiocompatibilityPublication . Ramos, Patrícia A. B.; Moreirinha, Catarina; Silva, Sara; Costa, Eduardo M.; Veiga, Mariana; Coscueta, Ezequiel R.; Santos, Sónia A. O.; Almeida, Adelaide; Pintado, M. Manuela; Freire, Carmen S. R.; Silva, Artur M. S.; Silvestre, Armano J. D.Salix spp. have been exploited for energy generation, along with folk medicine use of bark extracts for antipyretic and analgesic benefits. Bark phenolic components, rather than salicin, have demonstrated interesting bioactivities, which may ensure the sustainable bioprospection of Salix bark. Therefore, this study highlights the detailed phenolic characterization, as well as the in vitro antioxidant, anti-hypertensive, Staphylococcus aureus growth inhibitory effects, and biocompatibility of Salix atrocinerea Brot., Salix fragilis L., and Salix viminalis L. bark polar extracts. Fifteen phenolic compounds were characterized by ultra-high-performance liquid chromatography-ultraviolet detection-mass spectrometry analysis, from which two flavan-3-ols, an acetophenone, five flavanones, and a flavonol were detected, for the first time, as their bark components. Salix bark extracts demonstrated strong free radical scavenging activity (5.58–23.62 µg mL−1 IC50 range), effective inhibition on angiotensin-I converting enzyme (58–84%), and S. aureus bactericidal action at 1250–2500 µg mL−1 (6–8 log CFU mL−1 reduction range). All tested Salix bark extracts did not show cytotoxic potential against Caco-2 cells, as well as S. atrocinerea Brot. and S. fragilis L. extracts at 625 and 1250 µg mL−1 against HaCaT and L929 cells. These valuable findings can pave innovative and safer food, nutraceutical, and/or cosmetic applications of Salix bark phenolic-containing fractions.