Repository logo
 

Search Results

Now showing 1 - 5 of 5
  • A hydroxyapatite–Fe2O3 based material of natural origin as an active sunscreen filter
    Publication . Piccirillo, C.; Rocha, C.; Tobaldi, D. M.; Pullar, R. C.; Labrincha, J. A.; Ferreira, M. O.; Castro, Paula M. L.; Pintado, M. E.
    The use of sunscreens as protective barriers against skin damage and cancer, by absorbing harmful UVA and UVB rays, is becoming an increasingly important issue. Such products are usually based on TiO2 or ZnO, although both Fe2O3 and hydroxyapatite (Ca10(PO4)6(OH)2, HAp) doped with metal ions have been reported as being ultraviolet (UV) absorbing materials. HAp is the main component of bone; it is, therefore, highly biocompatible. In the present work, an iron-doped HAp-based material, containing both Fe ions substituted into the HAp structure and iron oxide in hematite (a-Fe2O3) form, was successfully developed from waste cod fish bones. This was achieved through a simple process of treating the bones in a Fe(II) containing solution, followed by heating at 700 C. The material showed good absorption in the whole UV range and did not form radicals when irradiated. The sunscreen cream formulated with this material could be used as a broad sunscreen protector (lcrit > 370 nm), showing high absorption both in the UVA and UVB ranges. Because of its absorption properties it would be classified as 5 star protection according to the Boots UVA star rating system. The cream is also photostable, and does not cause irritation or erythema formation when in contact with the human skin. These results show that a food by-product such as fish bones could be converted into a valuable product, with potential applications in health care and cosmetics. This is the first time a HAp-based sunscreen cream has been developed and validated as a proof of concept.
  • Calcium phosphate-based materials of natural origin showing photocatalytic activity
    Publication . Piccirillo, Clara; Dunnill, Charles W.; Pullar, Robert C.; Tobaldi, David M.; Labrincha, João A.; Parkin, Ivan P.; Pintado, Manuela M.; Castro, Paula M. L.
    Calcium phosphate based materials of natural origin with photocatalytic properties were produced. Bones of Atlantic cod fish were treated in appropriate solutions (either Ca- or Ti-containing salts) and successively annealed. Results showed multiphasic materials (hydroxyapatite, beta-tricalcium phosphate and anatase titania) with excellent photocatalytic performance under both UV and visible light, with an anatase concentration of only about 2 mol%. Results with such a low amount of anatase have never been reported before for a calcium phosphate-based material; this is attributed to the presence of anatase being mainly on the surface. Single-phase hydroxyapatite (Ca-10(PO4)(6)(OH)(2) or HAp) also showed some photocatalytic properties and antibacterial activity.
  • Light induced antibacterial activity and photocatalytic properties of Ag/Ag3PO4 -based material of marine origin
    Publication . Piccirillo, C.; Pinto, R. A.; Tobaldi, D. M; Pullar, R. C.; Labrincha, J. A.; Pintado, M. M. E.; Castro, P. M. L.
    Fish bones were converted into materials consisting of silver phosphate (Ag3PO4), beta-calcium phosphate (beta-Ca-3(PO4)(2), beta-TCP) and hydroxyapatite (Ca-10(PO4)(6)(OH)(2), HAp), as well as of metallic silver (Ag-0), with a simple treatment in solution and calcination (650 or 1000 degrees C). The antibacterial activity of the material was measured in the dark and under UV and white light irradiation; this is the first time that an Ag3PO4-based material was tested under these conditions. Results showed light-enhanced antibacterial properties toward Gram-positive and Gram-negative strains (Methicillin-resistant Staphylococcus aureus -MRSA, Escherichia coli,Pseudomonas aeruginosa), with inactivation rates of up to 99.999% under UV light, and 99% for E. coli under white light (artificial indoor lighting). The photocatalytic activity was also tested, and the degradation of methylene blue dye was observed under both UV and white light. Even if the MB degradation was to a smaller extent under white light, it was approximately twice that of the commercial photocatalyst P25. This work demonstrates the valorisation of a food industry by-product such as fish bones to form a potentially valuable material, with important applications in self sterilizing surfaces and environmental remediation.
  • Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen
    Publication . Teixeira, M. A. C.; Piccirillo, C.; Tobaldi, D. M.; Pullar, R. C.; Labrincha, J. A.; Ferreira, M. O.; Castro, Paula M. L.; Pintado, M. M. E.
    The development of innovative, safe and non-photocatalytic sunscreens is urgently needed, as it is essential to have sunscreen filters offering appropriate UV protection without damaging the environment and/or generating free radicals when in contact with the skin. Hydroxyapatite (Ca-10(PO4)(6)(OH)(2), HAp) when substituted with iron has UV protection properties and is not photocatalytic; HAp was used to make a sunscreen filter by treating cod fish bones in an iron-containing solution, and then calcining them at 700 degrees C. Here we present a systematic and advanced study on this material, to obtain a sunscreen with improved UV absorbing properties, Bones were treated with three different iron salts - Fe(II) chloride, Fe(II) lactate and Fe(III) nitrate - under various pH conditions. Results showed that Fe(II) chloride in basic pH led to the most effective iron inclusion, High energy ball milling or ultrasound were investigated to increase surface area and corresponding UV absorption; high energy ball milling treatment led to the best optical properties. The optimum powders were used to formulate UV protection creams, which showed Sun Protection Factor (SPF) values significantly superior to the control cream (up to 4.1). Moreover the critical wavelength (lambda(crit)) was >370 nm (388-389 nm) and UVA/UVB ratios were very close to 1. With these properties these sunscreens can be classified as broad UV protectors. Results also showed that combining these powders with other sunscreens (i.e. titanium dioxide), a synergic effect between the different components was also observed. This investigation showed that HAp-based sunscreens of marine origin are a valid alternative to commercial products, safe for the health of the customers and, being non-photocatalytic, do not pose a threat to the environment.
  • Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures
    Publication . Tobaldi, D. M.; Piccirillo, C.; Rozman, N.; Pullar, R. C.; Seabra, M. P.; Škapin, A. Sever; Castro, Paula M. L.; Labrincha, J. A.
    Titanium dioxide (TiO2) is well established as one of the most common photocatalysts used for many environmental, anti-pollution and antibacterial applications. However, in this work, novel photocatalytic TiO2 nanopowders were modified with additions of 1 mol% copper, zinc or copper + zinc (with various Cu: Zn ratios). These were prepared via a green sol–gel route and thermally treated at 450 C. For the first time, a direct comparison of the effects of these two modifying agents was performed, both as single and co-substitution. The compounds were thoroughly characterised by means of advanced X-ray diffraction (Whole Powder Pattern Modelling, WPPM) and spectroscopic methods (Raman and UV–vis). For functional properties, the photocatalytic activity in the gas-solid phase (nitrous oxides (NOx) and isopropanol degradation (VOCs)) was tested under UV and visible light, and antibacterial activity against Gram positive and Gram negative bacterial strains was also investigated. Neither copper nor zinc entered into the TiO2 structure, but nucleated as oxides at the surface of titania nanoparticles, thus creating a nano-heterojunction between the semiconductor materials; this also retarded the anatase-to-rutile phase transition. When comparing and contrasting their functional properties, it was found that Zn modification gave greater photocatalytic activity than that with Cu. On the contrary, for antibacterial activity, copper was shown to be a better additive. Co-modification with both metals did not improve the antibacterial behaviour, but did lead to an increase in photocatalytic activity in some cases.