Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus
    Publication . Nobre, C.; Sousa, S.C.; Silva, S.P.; Pinheiro, A.C.; Coelho, E.; Vicente, A.A.; Gomes, A.M.P.; Coimbra, M.A.; Teixeira, J.A.; Rodrigues, L.R.
    The bifidogenic potential of fructo-oligosaccharides (FOS) produced by a newly isolated strain – Aspergillus ibericus was studied. Their activity was compared to FOS produced by Aureobasidium pullulans and to a nonmicrobial commercial FOS sample (Raftilose® P95). FOS fermentability by a number of probiotic bacteria and their hydrolytic resistance to the simulated harsh conditions of the digestive system was evaluated. Aspergillus ibericus FOS sample effectively promoted probiotic bacteria growth. Overall, microbial-derived FOS promoted greater cellular growth compared to the commercial sample. FOS fermentation was both substrate and strain specific. The FOS structural differences identified may explain their distinct assimilation by the probiotics. [Fru (2→6)Glc] (possibly blastose) and a reducing trisaccharide (possibly [Fru(β2→6)Glc(α1↔β2)Fru], neokestose) were only found in microbial-derived FOS samples, while Raftilose® P95 was richer in inulobiose/inulotriose. 1- Kestose and nystose were only slightly hydrolyzed in the presence of gastric and intestinal fluid. FOS synthesized by Aspergillus exhibited great potential as food ingredients with likely prebiotic features.
  • Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media
    Publication . Pintado, Ana I. E.; Ferreira, José A.; Pintado, Maria M. E.; Gomes, Ana M. P.; Malcata, F. Xavier; Coimbra, Manuel A.
    De-Man Rogosa and Sharpe (MRS) is a complex medium commonly used to obtain exopolysaccharides (EPS) from lactic acid bacteria. However, the various nutrients (carbon and nitrogen sources) of media and supplements added to enhance the bacterial growth and EPS production, may interfere with the purification of the extracts resulting in an over-estimation of the EPS and erroneous structural assignments. The efficiency of trichloroacetic acid (TCA)/pronase and 5-sulfosalicylic acid – SSA methods was evaluated. In addition, the interference of the major MRS broth components as well as lactose was evaluated using xanthan gum as model control EPS. It was concluded that MRS medium is a major source of interfering compounds in the quantification of EPS, mainly glucose-rich material and to a lesser extent mannoproteins from yeast extract. This effect was found to be potentiated by the presence of lactose. TCA/pronase method was shown to be more efficient in eliminating interferents.
  • Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound
    Publication . Pinheiro, Ana C.; Bourbon, Ana I.; Quintas, Mafalda A.C.; Coimbra, Manuel A.; Vicente, António A.
    Multilayer nanocoatings composed of κ-carrageenan, a sulphated anionic polysaccharide, and chitosan, a cationic polysaccharide, were produced by layer-by-layer deposition. The model cationic compound Methylene Blue (MB) was incorporated in different positions of the nanolayered coating and its loading and release behavior was evaluated. UV–VIS spectroscopy and quartz crystal microbalance analysis showed that the amount of MB loaded increased with the distance from the first layer, suggesting that the MB was able to diffuse into the κ-carrageenan/chitosan nanolayered coating and not only adhered to the surface of the layer immediately below it. For most of the tested conditions, the MB release from the κ-carrageenan/chitosan nanolayered coatings was successfully described by the linear superimposition model, which allowed concluding that MB transport is due to both concentration gradient and the polymer relaxation of the nanolayers. However, depending on temperature and pH of the medium and on the position of MB incorporated on the nanolayered coatings, different mechanisms prevail. Industrial relevance: The development of novel edible coatings with improved functionality and performance for e.g. fresh and minimally processed fruits is one of the challenges of the post-harvest industry. This work contributes to the understanding of the loading and release phenomena involved in structures at the nanoscale, which is useful for the development of bioactive compounds release systems for application in food industry. Moreover, the κ-carrageenan/chitosan nanolayered coatings represent a promising platform from which the controlled release of different bioactive compounds may be explored.