Browsing by Author "Ribeirinho-Soares, Sara"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Performance of polycarbonate, cellulose nitrate and polyethersulfone filtering membranes for culture-independent microbiota analysis of clean watersPublication . Abreu-Silva, Joana; Ribeirinho-Soares, Sara; Oliveira-Inocêncio, Inês; Pedrosa, Marta; Silva, Adrián M. T.; Nunes, Olga C.; Manaia, Célia M.Demineralized and disinfected waters may have very low microbial loads, requiring that large volumes of water are filtered to recover enough biomass for further analysis. Extended filtration periods, often interrupted by clogging, are a major limiting factor to concentrate samples' microbiota for further examination, besides hindering the work pace. In this study, we investigated the performance of three types of filtering membranes - polycarbonate (PC), cellulose nitrate (CN), and polyethersulfone (PES) with 0.22 μm pore size for culture-independent microbiological analysis (quantitative PCR of seven housekeeping and integrase genes) of tap water, recirculating tap water in a bottle washing loop, and of demineralized water. Compared to PC membranes, CN or PES required lower filtration periods, although had slightly lower DNA extraction yields. However, genes abundance per volume of water was, in general, not significantly different. The exception was observed for bottle washing water in which PC membranes supported significantly higher quantification values than PES membranes. These differences were lower than ∼0.5 log-units and did not hamper the distinction of the types of water based on genes profile. Also, the type of membrane did not significantly affect the profile of the bacterial community determined for tap and demineralized water. A major conclusion is that CN membranes, cheaper, allowing shorter filtration periods, and producing results that are not significantly different from those obtained with PC or PES, can be a good alternative to analyze waters with low biomass loads.
- A pilot study combining ultrafiltration with ozonation for the treatment of secondary urban wastewater: organic micropollutants, microbial load and biological effectsPublication . Graça, Cátia A. L.; Ribeirinho-Soares, Sara; Abreu-Silva, Joana; Ramos, Inês I.; Ribeiro, Ana R.; Castro-Silva, Sérgio M.; Segundo, Marcela A.; Manaia, Célia M.; Nunes, Olga C.; Silva, Adrián M. T.Ozonation followed by ultrafiltration (O3 + UF) was employed at pilot scale for the treatment of secondary urban wastewater, envisaging its safe reuse for crop irrigation. Chemical contaminants of emerging concern (CECs) and priority substances (PSs), microbial load, estrogenic activity, cell viability and cellular metabolic activity were measured before and immediately after O3 + UF treatment. The microbial load was also evaluated after one-week storage of the treated water to assess potential bacteria regrowth. Among the organic micropollutants detected, only citalopram and isoproturon were not removed below the limit of quantification. The treatment was also effective in the reduction in the bacterial loads considering current legislation in water quality for irrigation (i.e., in terms of enterobacteria and nematode eggs). However, after seven days of storage, total heterotrophs regrew to levels close to the initial, with the concomitant increase in the genes 16S rRNA and intI1. The assessment of biological effects revealed similar water quality before and after treatment, meaning that O3 + UF did not produce detectable toxic by-products. Thus, the findings of this study indicate that the wastewater treated with this technology comply with the water quality standards for irrigation, even when stored up to one week, although improvements must be made to minimise microbial overgrowth.
- Survival of clinical and environmental carbapenem-resistant Klebsiella pneumoniae ST147 in surface waterPublication . Ferreira, Catarina; Luzietti, Lara; Ribeirinho-Soares, Sara; Nunes, Olga C.; Vaz-Moreira, Ivone; Manaia, Célia M.Carbapenem-resistant Klebsiella pneumoniae represents a healthcare threat, already disseminated in the environment. This study aimed to compare the behaviour of a clinical and an environmental K. pneumoniae strain (multilocus sequence type ST147) harbouring the gene blaKPC-3 in water. The abundance of the genes phoE (specific for K. pneumoniae) and blaKPC-3 was monitored by quantitative PCR in urban runoff water and sterile ultra-pure water microcosms, aiming to assess survival, blaKPC-3 persistence, and the effect of the native water microbiota. In sterile ultra-pure water, the abundance of cultivable K. pneumoniae and blaKPC-3 gene did not change over the incubation period (8 days). In contrast, in urban runoff, the K. pneumoniae and the genes phoE and blaKPC genes decreased by up to 3 log-units. These results suggest that K. pneumoniae were outcompeted by the native microbiota of the urban runoff water and that the decay of blaKPC-3 gene was due to host death, rather than to gene loss. The study highlights that although native microbiota is essential to hamper the persistence of non-native bacteria, carbapenemase producing K. pneumoniae can survive in urban runoff water for at least one week.