Browsing by Author "Mendes, Vera M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- COVID-19 salivary protein profile: unravelling molecular aspects of SARS-CoV-2 infectionPublication . Esteves, Eduardo; Mendes, Vera M.; Manadas, Bruno; Lopes, Rafaela; Bernardino, Liliana; Correia, Maria José; Barros, Marlene; Esteves, Ana Cristina; Rosa, NunoCOVID-19 is the most impacting global pandemic of all time, with over 600 million infected and 6.5 million deaths worldwide, in addition to an unprecedented economic impact. Despite the many advances in scientific knowledge about the disease, much remains to be clarified about the molecular alterations induced by SARS-CoV-2 infection. In this work, we present a hybrid proteomics and in silico interactomics strategy to establish a COVID-19 salivary protein profile. Data are available via ProteomeXchange with identifier PXD036571. The differential proteome was narrowed down by the Partial Least-Squares Discriminant Analysis and enrichment analysis was performed with FunRich. In parallel, OralInt was used to determine interspecies Protein-Protein Interactions between humans and SARS-CoV-2. Five dysregulated biological processes were identified in the COVID-19 proteome profile: Apoptosis, Energy Pathways, Immune Response, Protein Metabolism and Transport. We identified 10 proteins (KLK 11, IMPA2, ANXA7, PLP2, IGLV2-11, IGHV3-43D, IGKV2-24, TMEM165, VSIG10 and PHB2) that had never been associated with SARS-CoV-2 infection, representing new evidence of the impact of COVID-19. Interactomics analysis showed viral influence on the host immune response, mainly through interaction with the degranulation of neutrophils. The virus alters the host’s energy metabolism and interferes with apoptosis mechanisms.
- Protein quality assessment on saliva samples for biobanking purposesPublication . Rosa, Nuno; Marques, Jéssica; Esteves, Eduardo; Fernandes, Mónica; Mendes, Vera M.; Afonso, Ângela; Dias, Sérgio; Pereira, Joaquim Polido; Manadas, Bruno; Correia, Maria José; Barros, MarleneBiobank saliva sample quality depends on specific criteria applied to collection, processing, and storage. In spite of the growing interest in saliva as a diagnostic fluid, few biobanks currently store large collections of such samples. The development of a standard operating procedure (SOP) for saliva collection and quality control is fundamental for the establishment of a new saliva biobank, which stores samples to be made available to the saliva research community. Different collection methods were tested regarding total volume of protein obtained, protein content, and protein profiles, and the results were used to choose the best method for protein studies. Furthermore, the impact of the circadian variability and inter- and intraindividual differences, as well as the saliva sample stability at room temperature, were also evaluated. Considering our results, a sublingual cotton roll method for saliva collection proved to produce saliva with the best characteristics and should be applied in the morning, whenever possible. In addition, there is more variability in salivary proteins between individuals than in the same individual for a 5-month period. According to the electrophoretic protein profile, protein stability is guaranteed for 24 hours at room temperature and the protein degradation profile and protein identification were characterized. All this information was used to establish an SOP for saliva collection, processing, and storage in a biobank. We conclude that it is possible to collect saliva using an easy and inexpensive protocol, resulting in saliva samples for protein analysis with sufficient quality for biobanking purposes.