Browsing by Author "Fangueiro, Joana F."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- From sugarcane to skin: lignin as a multifunctional ingredient for cosmetic applicationPublication . Antunes, Filipa; Mota, Inês F.; Fangueiro, Joana F.; Lopes, Graciliana; Pintado, Manuela; Costa, Patrícia SantosLignin has been suggested as a promising candidate for cosmetic applications due to its remarkable potential to absorb ultraviolet rays and distinctive antioxidant activity. This study aims at evaluating the performance of lignin from sugarcane bagasse (SCB) as natural UV blocker, antioxidant, and pigment. Lignin was extracted from SCB, characterized and incorporated into a blemish balm (BB) cream. The biological potential, concretely, in vitro and in vivo sun protection factor (SPF) and in vitro UVA-PF, and safety were assessed. A high-purity SCB lignin (>92 %) was obtained by a mild alkaline extraction process. The results of cytotoxicity, mutagenicity, skin sensitization and in vivo acute cutaneous irritation demonstrated that SCB lignin is safe for topical applications. Lignin showed capacity to scavenge both ABTS and DPPH radicals, which were preserved after its incorporation into the cosmetic formulation. Notable results were achieved in terms of in vitro and in vivo SPF of 9.5 ± 2.9 and 9.6 ± 0.8, respectively. Furthermore, the tested lignin-based BB cream revealed a broad-spectrum UV protection (critical wavelength of 378 ± 0.5 nm). These results suggest SCB lignin as multifunctional and safe ingredient for use in cosmetic products.
- In vivo study of the effect of sugarcane bagasse lignin supplementation on broiler chicken diet as a step to validate the established chicken gastrointestinal tract in vitro modelPublication . Carvalho, Nelson Mota de; Souza, Carla Giselly de; Costa, Célia Maria; Castro, Cláudia; Fangueiro, Joana F.; Horta, Bruno; Outor-Monteiro, Divanildo; Teixeira, José; Mourão, José Luís; Pinheiro, Victor; Amaro, Ana L.; Costa, Patrícia Santos; Oliveira, Catarina S. S.; Pintado, Manuela Estevez; Oliveira, Diana Luazi; Madureira, Ana RaquelSince the global restrictions on antibiotics in poultry systems, there has been a growing demand for natural and sustainable feed additives for disease prevention and poultry nutrition. This study evaluated the effects of incorporating sugarcane bagasse (SCB) lignin into broiler chicken diets. The performance of the chickens, including body weight, feed intake, and mortality, as well as intestinal histomorphometry, and cecum content pH, microbiota, and volatile fatty acids were assessed. In addition, we also aimed to validate an in vitro gastrointestinal tract (GIT) model developed by Carvalho et al. (2023). One hundred and eight 1-day-old Ross 308 chicks were randomly and equally divided into two groups. The first group was fed a basal diet (BD group), while the second group was fed a basal diet supplemented with 1% (w/w) SCB lignin (BD + SCB lignin group) for 36 days. The in vivo conditions of the chicken GIT were replicated in an in vitro model. In the in vivo study, SCB lignin increased cecum acetate and butyrate levels while reducing Bifidobacterium and Enterobacteriaceae, without affecting productivity (body weight, feed intake, and mortality). The in vitro assessment reflected microbiota trends observed in vivo, although without statistical significance. The divergence in organic acid production between the in vivo and in vitro conditions likely resulted from issues with inoculum preparation. This study demonstrates that SCB lignin incorporation positively influences cecal microbiota composition without impacting the animals’ productivity and physiology, suggesting its potential as a functional feed additive. For a more reliable in vitro model, adjustments in inoculum preparation are necessary.
- Lignin from sugarcane bagasse as a prebiotic additive for poultry feedPublication . Fangueiro, Joana F.; Carvalho, Nelson Mota de; Antunes, Filipa; Mota, Inês F.; Pintado, Manuela Estevez; Madureira, Ana Raquel; Costa, Patrícia SantosDiet is a crucial factor on health and well-being of livestock animals. Nutritional strengthening with diet formulations is essential to the livestock industry and animal perfor-mance. Searching for valuable feed additives among by-products may promote not only circular economy, but also functional diets. Lignin from sugarcane bagasse was proposed as a potential prebiotic additive for chickens and incorporated at 1 % (w/w) in commercial chicken feed, tested in two feed forms, namely, mash and pellets. Physico-chemical characterization of both feed types with and without lignin was performed. Also, the prebiotic potential for feeds with lignin was assessed by an in vitro gastrointestinal model and evaluated the impact on chicken cecal Lactobacillus and Bifidobacterium. As for the pellet's physical quality, there was a higher cohesion of the pellets with lignin, indicating a higher resistance to breakout and lignin decreases the tendency of the pellets for microbial contamination. Regarding the prebiotic potential, mash feed with lignin showed higher promotion of Bifidobacterium in comparison with mash feed without lignin and to pellet feed with lignin. Lignin from sugarcane bagasse has prebiotic potential as additive to chicken feed when supplemented in mash feed diets, presenting itself as a sustainable and eco-friendly alternative to chicken feed additives supplementation.
- Sugarcane light-colored lignin: a renewable resource for sustainable beautyPublication . Mota, Inês F.; Antunes, Filipa; Fangueiro, Joana F.; Costa, Carina A. E.; Rodrigues, Alírio E.; Pintado, Manuela E.; Costa, Patrícia S.Lignin has emerged as a promising eco-friendly multifunctional ingredient for cosmetic applications, due to its ability to protect against ultraviolet radiation and its antioxidant and antimicrobial properties. However, its typical dark color and low water solubility limit its application in cosmetics. This study presents a simple process for obtaining light-colored lignin (LCLig) from sugarcane bagasse (SCB) alkaline black liquor, involving an oxidation treatment with hydrogen peroxide, followed by precipitation with sulfuric acid. The physico-chemical characterization, antioxidant and emulsifying potential of LCLig, and determination of its safety and stability in an oil-in-water emulsion were performed. A high-purity lignin (81.6%) with improved water solubility was obtained, as a result of the balance between the total aromatic phenolic units and the carboxylic acids. In addition, the antioxidant and emulsifying capacities of the obtained LCLig were demonstrated. The color reduction treatment did not compromise the safety of lignin for topical cosmetic applications. The emulsion was stable in terms of organoleptic properties (color, pH, and viscosity) and antioxidant activity over 3 months at 4, 25, and 40 °C.