Browsing by Author "Dodd, John C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Different native arbuscular mycorrhizal fungi influence the coexistence of two plant species in a highly alkaline anthropogenic sedimentPublication . Oliveira, Rui S.; Castro, Paula M. L.; Dodd, John C.; Vosátka, MiroslavDifferent species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Re´my) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. DifferentAMFspecies did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERMlengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.
- Genetic, phenotypic and functional variation within a Glomus geosporum isolate cultivated with or without the stress of a highly alkaline anthropogenic sedimentPublication . Oliveira, Rui S.; Boyer, Louisa Robinson; Carvalho, Maria F.; Jeffries, Peter; Castro, Paula M.L.; Vosátka, Miroslav; Dodd, John C.Genetic, phenotypic and functional variation in a Glomus geosporum isolate obtained from a highly alkaline anthropogenic sediment was investigated. Two cultivation lineages of G. geosporum (BEG199 and BEG211) were created by sub-culturing with or without the stress of the sediment. Genetic variation was assessed on spores from both cultivation lineages in the large sub-unit rRNA gene D2 region using PCR-single strand conformational polymorphism (PCR-SSCP) and sequencing. Phenotypical and functional variation of the cultivation lineages were assessed after inoculation onto Conyza bilbaoana. The sequence diversity obtained in G. geosporum BEG211 was significantly different from that obtained in G. geosporum BEG199. Glomus geosporum BEG199 was more effective than G. geosporum BEG211 in promoting the growth of C. bilbaoana in inert substrate and in increasing its leaf phosphorus concentration when the plant was grown in sediment. After inoculation onto C. bilbaoana, G. geosporum BEG199 colonised the roots to a greater extent, produced a significantly larger number of spores and presented a greater length of extraradical mycelium than G. geosporum BEG211. The results indicate that environmental conditions under which arbuscular mycorrhizal fungi (AMF) are cultivated can influence their effects in host plants. Also, AMF might quickly lose gained-tolerance to environmental stresses when maintained without the selective pressure of those stresses. This study has implications for the production of commercial inoculum of AMF and for the maintenance of AMF cultures. The results indicate that inoculum of AMF should be produced and AMF cultures should be maintained in substrates or media containing the original edaphic stresses.
- Phytoremediation as a biotechnological tool for environmental restorationPublication . Marques, Ana P. G. C.; Rangel, António O. S. S.; Calheiros, Cristina S. C.; Oliveira, Rui S.; Franco, Albina R.; Vosatka, Miroslav; Dodd, John C.
