Browsing by Author "Bourbon, Ana I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Physicochemical characterisation and release behaviour of curcumin-loaded lactoferrin nanohydrogels into food simulantsPublication . Araújo, João F.; Bourbon, Ana I.; Simões, Livia S.; Vicente, António A.; Coutinho, Paulo J. G.; Ramos, Oscar. L.Whey protein nanostructures can be used as vehicles for the incorporation of nutraceuticals (e.g., antioxidants or vitamins) aimed at the development of functional foods, because nanostructures provide greater protection, stability and controlled release to such nutraceuticals. Fundamental knowledge is required regarding the behaviour of nanostructures when associated with nutraceuticals and their interactions with real food matrices. In this study, a lactoferrin (LF) nanohydrogel was developed to encapsulate curcumin (nutraceutical model) and its behaviour was evaluated in terms of the LF structure and the interaction with curcumin. The release kinetics of curcumin from LF nanohydrogels was also assessed using food simulants with a hydrophilic nature (10% ethanol) and lipophilic nature (50% ethanol). This system was able to encapsulate curcumin at 80 μg mL−1 with an efficiency of ca. 90% and loading capacity of ca. 3%. Through spectroscopic characterisation, it is suggested that LF and curcumin bind via hydrophobic interactions and the average binding distance between LF and curcumin was found to be 1.91 nm. Under refrigerated conditions (4 °C), this system showed stability for up to 35 days, while at room temperature (25 °C) it was shown to be stable for up to 14 days of storage. The LF nanohydrogel presented higher release rates of curcumin in a lipophilic food simulant (stable after ca. 7 h) as compared to a hydrophilic simulant (stable after ca. 4 h). LF nanohydrogels were successfully incorporated into a gelatine matrix and showed no degradation in this process. The behaviour of this system and the curcumin release kinetics in food stimulants make the LF nanohydrogel an interesting system to associate with lipophilic nutraceuticals and to incorporate in refrigerated food products of a hydrophilic nature.
- Κ-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compoundPublication . Pinheiro, Ana C.; Bourbon, Ana I.; Quintas, Mafalda A.C.; Coimbra, Manuel A.; Vicente, António A.Multilayer nanocoatings composed of κ-carrageenan, a sulphated anionic polysaccharide, and chitosan, a cationic polysaccharide, were produced by layer-by-layer deposition. The model cationic compound Methylene Blue (MB) was incorporated in different positions of the nanolayered coating and its loading and release behavior was evaluated. UV–VIS spectroscopy and quartz crystal microbalance analysis showed that the amount of MB loaded increased with the distance from the first layer, suggesting that the MB was able to diffuse into the κ-carrageenan/chitosan nanolayered coating and not only adhered to the surface of the layer immediately below it. For most of the tested conditions, the MB release from the κ-carrageenan/chitosan nanolayered coatings was successfully described by the linear superimposition model, which allowed concluding that MB transport is due to both concentration gradient and the polymer relaxation of the nanolayers. However, depending on temperature and pH of the medium and on the position of MB incorporated on the nanolayered coatings, different mechanisms prevail. Industrial relevance: The development of novel edible coatings with improved functionality and performance for e.g. fresh and minimally processed fruits is one of the challenges of the post-harvest industry. This work contributes to the understanding of the loading and release phenomena involved in structures at the nanoscale, which is useful for the development of bioactive compounds release systems for application in food industry. Moreover, the κ-carrageenan/chitosan nanolayered coatings represent a promising platform from which the controlled release of different bioactive compounds may be explored.