Repository logo
 
Publication

Electroencephalogram hybrid method for alzheimer early detection

dc.contributor.authorRodrigues, Pedro Miguel
dc.contributor.authorFreitas, Diamantino
dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorBispod, Bruno
dc.contributor.authorAlves, Dílio
dc.contributor.authorGarrett, Carolina
dc.date.accessioned2019-03-13T15:00:42Z
dc.date.available2019-03-13T15:00:42Z
dc.date.issued2018
dc.description.abstractAlzheimer’s disease (AD) is a neurocognitive illness that leads to dementia and mainly affects the elderly. As the percentage of old people is strongly increasing worldwide, it is urgent to develop contributions to solve this complex problem. The early diagnosis at AD first stage known as Mild Cognitive Impairment (MCI) needs a better accuracy and there is not a biomarker able to detect AD without invasive tests. In this study, Electroencephalogram (EEG) signals have been used to serve as a way of finding parameters to improve AD diagnosis in first stages. For that, a hybrid method based on a Cepstral analysis of EEG Discrete Wavelet Transform (DWT) multiband decomposition was developed. Several Cepstral Distances (CD) were extracted to verify the lag between cepstra of conventional bands signals. The results showed that this hybrid method is a good tool for describing and distinguishing the AD EEG activity along its different stages because several statistically significant parameters variations were found between controls, MCI, moderate AD and advanced AD (the lowest p-value=0.003<0.05).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRodrigues, P.M., Freitas, D., Teixeira, J.P., Bispo, B., Alves, D., Garrett, C. (2018). Electroencephalogram hybrid method for alzheimer early detection. In CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN/HCist 2018, Lisboa, Portugal, 21-23 November 2018. Procedia Computer Science, 138, 209–214pt_PT
dc.identifier.doi10.1016/j.procs.2018.10.030pt_PT
dc.identifier.eid85061980451
dc.identifier.issn1877-0509
dc.identifier.urihttp://hdl.handle.net/10400.14/27083
dc.identifier.wos000550164600029
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectAlzheimer’s diaseasept_PT
dc.subjectEarly diagnosispt_PT
dc.subjectCepstral analisyspt_PT
dc.subjectWavelet transformpt_PT
dc.subjectElectroencephalogram signalspt_PT
dc.subjectCepstral distancespt_PT
dc.titleElectroencephalogram hybrid method for alzheimer early detectionpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.citation.endPage214
oaire.citation.startPage209
oaire.citation.titleProcedia Computer Sciencept_PT
oaire.citation.volume138
person.familyNameTeixeira
person.familyNameLobo de Almeida Garrett
person.givenNameJoão
person.givenNameMaria Carolina
person.identifier663194
person.identifier132103
person.identifier.ciencia-id4F15-B322-59B4
person.identifier.orcid0000-0002-6679-5702
person.identifier.orcid0000-0003-3336-3302
person.identifier.ridN-6576-2013
person.identifier.ridA-5332-2012
person.identifier.scopus-author-id57069567500
person.identifier.scopus-author-id55217547500
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication9fc3adf9-002d-4d05-bd2b-2dd401fac044
relation.isAuthorOfPublicationcca763b4-e3d3-4ccd-889a-6a1f759bf244
relation.isAuthorOfPublication.latestForDiscovery9fc3adf9-002d-4d05-bd2b-2dd401fac044

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
74984904.pdf
Size:
521.22 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.44 KB
Format:
Item-specific license agreed upon to submission
Description: