Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.14 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Customer churn prediction is a critical task for businesses operating in competitive markets, especially in the context of online retail. Identifying customers at risk of leaving a service or product allows businesses to implement proactive retention strategies and maintain long-term profitability. This thesis aims to investigate the factors influencing customer churn in online retail and develop predictive models to anticipate churn behavior. Leveraging machine learning techniques, interpretability, and explainability, this study explores the impact of various customer attributes such as demographic information, purchasing behavior, and satisfaction scores on churn prediction. The analysis uses a comprehensive dataset containing customer attributes, transaction history, and response to marketing campaigns. By employing logistic regression models, gradient boosting models and advanced interpretability techniques such as SHAP (SHapley Additive exPlanations), this research aims to provide actionable insights for businesses to mitigate churn and enhance customer retention strategies in the online retail landscape. The findings highlight the significance of features such as average transaction amount, annual income, and recency of last purchase in predicting customer churn, and demonstrate the superior performance of gradient boosting models over logistic regression models in this context.
A previsão de churn de clientes é uma tarefa crítica para empresas que operam em mercados competitivos, especialmente no varejo online. Identificar clientes com risco de abandonar um serviço ou produto permite que as empresas implementem estratégias de retenção proativas e mantenham a lucratividade a longo prazo. Esta tese tem como objetivo investigar os fatores que influenciam o churn de clientes no varejo online e desenvolver modelos preditivos para antecipar o comportamento de churn. Utilizando técnicas de aprendizado de máquina, interpretabilidade e explicabilidade, este estudo explora o impacto de vários atributos de clientes, como informações demográficas, comportamento de compra e pontuações de satisfação, na previsão de churn. A análise utiliza um conjunto de dados abrangente contendo atributos de clientes, histórico de transações e resposta a campanhas de marketing. Ao empregar modelos de regressão logística, gradient boosting e técnicas avançadas de interpretabilidade, como SHAP (SHapley Additive exPlanations), esta pesquisa visa fornecer percepções acionáveis para as empresas mitigarem o churn e aprimorarem as estratégias de retenção de clientes no cenário do varejo online. Os resultados destacam a importância de características como valor médio das transações, renda anual e recência da última compra na previsão de churn de clientes e demonstram o desempenho superior dos modelos de gradient boosting em relação aos modelos de regressão logística neste contexto.
A previsão de churn de clientes é uma tarefa crítica para empresas que operam em mercados competitivos, especialmente no varejo online. Identificar clientes com risco de abandonar um serviço ou produto permite que as empresas implementem estratégias de retenção proativas e mantenham a lucratividade a longo prazo. Esta tese tem como objetivo investigar os fatores que influenciam o churn de clientes no varejo online e desenvolver modelos preditivos para antecipar o comportamento de churn. Utilizando técnicas de aprendizado de máquina, interpretabilidade e explicabilidade, este estudo explora o impacto de vários atributos de clientes, como informações demográficas, comportamento de compra e pontuações de satisfação, na previsão de churn. A análise utiliza um conjunto de dados abrangente contendo atributos de clientes, histórico de transações e resposta a campanhas de marketing. Ao empregar modelos de regressão logística, gradient boosting e técnicas avançadas de interpretabilidade, como SHAP (SHapley Additive exPlanations), esta pesquisa visa fornecer percepções acionáveis para as empresas mitigarem o churn e aprimorarem as estratégias de retenção de clientes no cenário do varejo online. Os resultados destacam a importância de características como valor médio das transações, renda anual e recência da última compra na previsão de churn de clientes e demonstram o desempenho superior dos modelos de gradient boosting em relação aos modelos de regressão logística neste contexto.
Description
Keywords
Churn prediction Logistic regression Gradient boosting Interpretability & explainability SHAP Previsão de churn Regressão logística Interpretabilidade e explicabilidade