Repository logo
 
Loading...
Thumbnail Image
Publication

Exploring the potential of mealworm chitosan for hemodialysis applications

Use this identifier to reference this record.
Name:Description:Size:Format: 
117691979.pdf4.27 MBAdobe PDF Download

Advisor(s)

Abstract(s)

This study introduces a sustainable and efficient alternative to traditional chitosan sources derived from crustaceans, exploring the extraction and application of insect-derived chitosan from Tenebrio molitor for hemodialysis (HD) membranes design. Efficient extraction and deacetylation methods were tested and developed between 6 h and 12 h to obtain chitosan. Chitin was isolated from T. molitor through deproteinization and demineralization, with yields of approximately 5 % (w/w). Chitosan was obtained from the extracted chitin resulting in yields of between 65.0 and 79.3 (w/w). Characterization using FTIR confirmed structural similarities with commercial chitosan and degrees of deacetylation in the 73–75 % range. The bioactive properties of chitosan obtained from T. molitor, including antimicrobial and antioxidant activities, were evaluated. All the microorganisms tested were inhibited, exhibiting minimum lethal concentrations between 2 and 8 mg/mL. In addition, chitosan showed antioxidant activity in the range of 60–65 μmol Trolox equivalent/g, suggesting its viability for various medical applications. This study additionally allowed the design of sustainable hybrid chitosan membrane (CH-M) tailored for HD applications. The permeation characteristics of CH-M for urea and albumin were studied in vitro to assess their suitability as HD membranes. Urea was permeable to values of over 70 % and albumin was retained. Also, cytotoxicity assays against L929 fibroblast cells demonstrated that the CH-M samples exhibit low metabolic inhibition (around 15 %) The application of CH-M in HD represents a significant advance, offering the potential for enhanced therapeutic outcomes for chronic kidney disease (CKD).

Description

Keywords

Bio-based membrane Chitosan Hemodialysis treatment Tenebrio molitor

Citation

Research Projects

Organizational Units

Journal Issue