Repository logo
 
Loading...
Thumbnail Image
Publication

Determining NBER recession points using machine learning

Use this identifier to reference this record.
Name:Description:Size:Format: 
203730224.pdf3.04 MBAdobe PDF Download

Abstract(s)

The financial crises cause significant challenges due to their profound impact on the economy and the inherent difficulty in predicting such events. Successfully forecasting a financial crisis could offer remarkable advantages, enabling preemptive measures to mitigate its adverse effects. Previous research has highlighted the importance of various indicators in predicting economic downturns, including the inverted term spread, real GDP, and unemployment rates. Additionally, machine learning methods have shown potential in identifying non-linear patterns among these variables, making them valuable in forecasting NBER recessions. In this study, we evaluated several machine learning classification and non-linear regression algorithms such as Support Vector Machine, K-Nearest Neighbours, Decision Tree, Extreme Gradient Boosting, Adaptive Boosting, Random Forest, Extra Trees, and Categorical Boosting other than traditional time series models like ARIMA and AR. The best forecast of the NBER recession points from 0 to 12 months ahead was obtained by inputting the best machine learning models9 prediction as one of the exogenous variables of an ARIMA(1,0,1). The forecasts obtained were especially effective between t + 0 and t + 4, with real GDP being the most relevant macroeconomic feature. Additionally, one version of the forecast was better suited to predict market troughs than official NBER recessions. Future research could extend this work by exploring the impact of different types of recessions, developing models tailored to emerging markets, or training models on specific big debt crises, such as using data from the 2008 financial crisis to forecast recessions similar to Japan9s 1990 economic downturn.
As crises financeiras representam grandes desafios devido ao seu profundo impacto econômico e à dificuldade de prever esses eventos com antecedência. Prever uma crise financeira com sucesso pode oferecer vantagens consideráveis, permitindo a adoção de medidas preventivas para mitigar seus efeitos. Pesquisas anteriores destacaram a importância de indicadores como a inversão da curva de juros, o PIB real e as taxas de desemprego na previsão de recessões. Além disso, métodos de têm mostrado potencial na identificação de padrões não lineares entre essas variáveis, tornando-os valiosos para prever recessões do NBER. Neste estudo, avaliamos diversos algoritmos de como Support Vector Machine, K-Nearest Neighbours, Decision Tree, Extreme Gradient Boosting, Adaptive Boosting, Random Forest, Extra Trees e Categorical Boosting, além de modelos tradicionais como ARIMA e AR. A melhor previsão dos pontos de recessão do NBER de 0 a 12 meses foi obtida ao inserir as previsões dos melhores modelos de como variáveis exógenas em um ARIMA(1,0,1). As previsões mais eficazes entre t + 0 e t + 4, o PIB real o indicador mais relevante. Além disso, uma versão do modelo mostrou-se mais adequada para prever os mínimos de mercado do que as recessões oficiais do NBER. Pesquisas futuras podem explorar o impacto de diferentes recessões, desenvolver modelos para mercados emergentes ou usar dados de crises, como a crise de 2008, para prever recessões semelhantes à recessão do Japão de 1990.

Description

Keywords

Machine learning NBER recession Business cycle forecast Previsão de ciclo econômico Recessão do NBER

Pedagogical Context

Citation

Research Projects

Organizational Units

Journal Issue