Repository logo
 
Publication

Personality matters : predicting the acceptance of generative artificial intelligence through personality traits and job insecurity

datacite.subject.fosCiências Sociais::Economia e Gestãopt_PT
dc.contributor.advisorMendonça, Cristina Soares Pacheco
dc.contributor.authorTassone, Debora
dc.date.accessioned2023-09-29T14:24:44Z
dc.date.available2023-09-29T14:24:44Z
dc.date.issued2023-06-26
dc.date.submitted2023-05
dc.description.abstractGenerative artificial intelligence (GAI) has the potential to fundamentally change humans’ lives, organizations, and industries by being able to create new content, expanding AI’s capabilities to areas of production that were previously exclusively human. To ensure a successful implementation, human acceptance of GAI is crucial. This thesis aims to find out if personality traits predict acceptance of GAI in the workplace. As GAI may be used to automate processes and replace humans, this thesis also investigates the influence of job insecurity on the acceptance of GAI and the influence of personality traits on job insecurity. This thesis’ quantitative study revealed that highly neurotic participants perceive GAI as less useful and less easy to use, compared to participants who are low in neuroticism. Moreover, participants perceived job insecurity considering the potential applications of GAI as rather low. Considering the low perceived job insecurity and rather high number of participants who did not use GAI frequently, participants might lack awareness and knowledge of application possibilities. These findings contribute to existing research on the relevance of personality traits in predicting the acceptance of intelligent technologies and provide guidance for recruitment and training of employees for positions where the use of GAI is crucial.pt_PT
dc.description.abstractA inteligência artificial generativa (IAG) tem o potencial de mudar fundamentalmente a vida dos seres humanos, das organizações e das indústrias por ser capaz de criar novos conteúdos, expandindo as capacidades da IA para áreas de produção que anteriormente eram exclusivamente humanas. Para garantir uma implementação bem sucedida, a aceitação humana da IAG é crucial. Esta tese tem como objectivo descobrir se os traços de personalidade prevêem a aceitação da IAG no local de trabalho. Como a IAG pode ser utilizado para automatizar processos e substituir os seres humanos, esta tese também investiga a influência da insegurança no trabalho na aceitação da IAG e a influência dos traços de personalidade na insegurança no trabalho. O estudo quantitativo desta tese revelou que os participantes altamente neuróticos consideram a IAG menos útil e menos fácil de utilizar, em comparação com os participantes com baixo nível de neuroticismo. Além disso, os participantes consideraram que a insegurança no emprego, tendo em conta as potenciais aplicações da IAG, era bastante baixa. Uma vez que as IAG podem ser utilizados para automatizar processos e substituir os seres humanos, esta tese também investiga a influência da insegurança no emprego na aceitação das IAG e a influência dos traços de personalidade na insegurança no emprego. Estas conclusões contribuem para a investigação existente sobre a relevância dos traços de personalidade na previsão da aceitação de tecnologias inteligentes e fornecem orientações para o recrutamento e a formação de trabalhadores para cargos em que a utilização de IAG é crucial.pt_PT
dc.identifier.tid203327144pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.14/42713
dc.language.isoengpt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectTechnology acceptance modelpt_PT
dc.subjectFive­factor modelpt_PT
dc.subjectJob insecuritypt_PT
dc.subjectInteligência artificialpt_PT
dc.subjectModelo de aceitação da tecnologiapt_PT
dc.subjectModelo de cinco factorespt_PT
dc.subjectInsegurança no empregopt_PT
dc.titlePersonality matters : predicting the acceptance of generative artificial intelligence through personality traits and job insecuritypt_PT
dc.typemaster thesis
dspace.entity.typePublication
rcaap.rightsopenAccesspt_PT
rcaap.typemasterThesispt_PT
thesis.degree.nameMestrado em Gestão e Administração de Empresaspt_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
203327144.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.44 KB
Format:
Item-specific license agreed upon to submission
Description: