| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 617.02 KB | Adobe PDF |
Advisor(s)
Abstract(s)
Como resultado da evolução e inovação tecnológicas, a indĆŗstria da distribuição electrónica de mĆŗsica tem tido um enorme crescimento. Desta forma, tarefas como a classificação automĆ”tica de gĆ©neros musicais tornam-se um forte motivo para o incremento da investigação na Ć”rea. O reconhecimento automĆ”tico de gĆ©neros musicais envolve tarefas como a extracção de caracterĆsticas das mĆŗsicas e o desenvolvimento de classificadores que utilizem essas caracterĆsticas. Neste estudo pretendeu-se, atravĆ©s de 3 problemas de classificação independentes, classificar peƧas de mĆŗsica clĆ”ssica. Foi construĆdo um protótipo para um sistema real de classificação, onde de um conjunto de mĆŗsicas nĆ£o catalogadas, foram automaticamente extraĆdos dez segmentos de seis segundos cada. Cada segmento musical foi classificado individualmente utilizando redes neuronais, tendo sido, para tal, extraĆdas 40 caracterĆsticas por segmento. Cada mĆŗsica foi classificada no gĆ©nero mais representado pelos seus segmentos.
As a result of recent technological innovations, there has been a tremendous growth in the Electronic Music Distribution industry. In this way, tasks such us automatic music genre classification address new and exciting research challenges. Automatic music genre recognition involves issues like feature extraction and development of classifiers using the obtained features. In this study we aim to classify classical music in subgenres, through three independent classification problems. Therefore, we extract 40 features for each one of the musical segments and we use neural nets as classifiers. Afterwards, due to the quality of the obtained results, a prototype system for automatic music classification of entire songs (not only segments) was built. We use 10 extracts for each song, uniformly distributed throughout the song. Each song is classified according to the most representative genre in all extracts.
As a result of recent technological innovations, there has been a tremendous growth in the Electronic Music Distribution industry. In this way, tasks such us automatic music genre classification address new and exciting research challenges. Automatic music genre recognition involves issues like feature extraction and development of classifiers using the obtained features. In this study we aim to classify classical music in subgenres, through three independent classification problems. Therefore, we extract 40 features for each one of the musical segments and we use neural nets as classifiers. Afterwards, due to the quality of the obtained results, a prototype system for automatic music classification of entire songs (not only segments) was built. We use 10 extracts for each song, uniformly distributed throughout the song. Each song is classified according to the most representative genre in all extracts.
Description
Keywords
Classificação de mĆŗsica Redes neuronais Extracção de caracterĆsticas AnĆ”lise de sinais musicais Neural nets Music information retrieval Music classification Feature extraction
Pedagogical Context
Citation
MALHEIRO, Ricardo [et. al.] - Sistemas de classificação musical com redes neuronais. Gestão e Desenvolvimento. Viseu. ISSN 0872-556X. Nº 12 (2004), p. 167-195.
Publisher
Universidade Católica Portuguesa. Instituto UniversitÔrio de Desenvolvimento e Promoção Social
