Repository logo
 
Publication

Deep reinforcement learning for inventory control: a roadmap

dc.contributor.authorBoute, Robert N.
dc.contributor.authorGijsbrechts, Joren
dc.contributor.authorJaarsveld, Willem van
dc.contributor.authorVanvuchelen, Nathalie
dc.date.accessioned2021-09-01T13:34:58Z
dc.date.available2021-09-01T13:34:58Z
dc.date.issued2022-04-16
dc.description.abstractDeep reinforcement learning (DRL) has shown great potential for sequential decision-making, including early developments in inventory control. Yet, the abundance of choices that come with designing a DRL algorithm, combined with the intense computational effort to tune and evaluate each choice, may hamper their application in practice. This paper describes the key design choices of DRL algorithms to facilitate their implementation in inventory control. We also shed light on possible future research avenues that may elevate the current state-of-the-art of DRL applications for inventory control and broaden their scope by leveraging and improving on the structural policy insights within inventory research. Our discussion and roadmap may also spur future research in other domains within operations management.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.ejor.2021.07.016
dc.identifier.eid85111846139
dc.identifier.issn0377-2217
dc.identifier.urihttp://hdl.handle.net/10400.14/34576
dc.identifier.wos000742431300001
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectInventory managementpt_PT
dc.subjectMachine learningpt_PT
dc.subjectNeural networkspt_PT
dc.subjectReinforcement learningpt_PT
dc.titleDeep reinforcement learning for inventory control: a roadmappt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage412
oaire.citation.issue2
oaire.citation.startPage401
oaire.citation.titleEuropean Journal of Operational Researchpt_PT
oaire.citation.volume298
person.familyNameGijsbrechts
person.givenNameJoren
person.identifier.ciencia-id141F-0415-84C0
person.identifier.orcid0000-0002-0846-6855
person.identifier.scopus-author-id57208346247
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication545069b9-294c-42eb-820e-72a0897cd28c
relation.isAuthorOfPublication.latestForDiscovery545069b9-294c-42eb-820e-72a0897cd28c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
37747702.pdf
Size:
761.05 KB
Format:
Adobe Portable Document Format