Repository logo
 
No Thumbnail Available
Publication

Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents

Use this identifier to reference this record.
Name:Description:Size:Format: 
19528006.pdf5.92 MBAdobe PDF Download

Advisor(s)

Abstract(s)

Secondary urban wastewater samples were spiked with azithromycin (AZT), trimethoprim (TMP), ofloxacin (OFL) and sulfamethoxazole (SMX) at 100 mu g L-1 to investigate the efficiency of a TiO2-photocatalytic treatment using UVA-LEDs. Different operating parameters were studied, such as the irradiation conditions, catalyst load and the use of methanol as carrier solvent and radical scavenger. The most efficient conditions to treat spiked urban wastewater (4 LEDs symmetrically distributed and 1.00 g L-1 of catalyst) were also assessed on the removal of the antibiotics at real concentrations, as well as on the inactivation and regrowth of bacteria after 3-day storage (total and resistant heterotrophs, Escherichia coli and enterococci). Clindamycin (CLI) was targeted when SMX was not detected. One-hour treatment was enough to reduce the analysed antibiotics to values below the detection limits and to decrease the bacterial load by 2 log-units. Bacterial regrowth was observed for total heterotrophs, after the storage of photocatalytic treated wastewater, to values close to pre-treatment. However, the antibiotic resistance percentage of such stored wastewater was always similar or lower than that of secondary urban wastewater. Thus, the potential of this process as part of the tertiary treatment is demonstrated, but conditions must be adjusted to minimize microbial regrowth.

Description

Keywords

TiO2-P25 Light emitting diodes (LEDs) Micropollutant Disinfection Antibiotic resistant bacteria Bacterial regrowth

Citation

Biancullo, F., Moreira, N. F. F., Ribeiro, A. R., Manaia, C. M., Faria, J. L., Nunes, O. C., … Silva, A. M. T. (2019). Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents. Chemical Engineering Journal, 367, 304–313. https://doi.org/10.1016/j.cej.2019.02.012

Organizational Units

Journal Issue