Repository logo
 
Loading...
Project Logo
Research Project

Advanced wastewater treatment: organic micropollutants, human pathogens and antibiotic resistance genes

Authors

Publications

Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: a comparison between aluminium sulphate and tannin coagulants
Publication . Grehs, Bárbara W. N.; Lopes, Ana Rita; Moreira, Nuno F. F.; Fernandes, Telma; Linton, Maria A. O.; Silva, Adrián M. T.; Manaia, Célia M.; Carissimi, Elvis; Nunes, Olga C.
The presence of antibiotic resistant-bacteria (ARB) and antibiotic resistance genes (ARG) in treated effluents of urban wastewater treatment plants (WWTP) may represent a threat to the environment and public health. Therefore, cost-effective technologies contributing to minimize loads of these contaminants in the final effluents of WWTP are required. This study aimed at assessing the capacity of coagulation to reduce the ARB&ARG load in secondary treated urban wastewater (STWW), as well as the impact of the process on the structure and diversity of the bacterial community. Coagulation performance using aluminium sulphate, a synthetic substance, and tannins, a biowaste, was compared. Samples were analysed immediately before (STWW) and after the coagulation treatment (Alu, Tan), as well as after 3-days storage in the dark at room temperature (RSTWW, RAlu, RTan), to assess possible reactivation events. Both coagulants decreased the turbidity and colour and reduced the bacterial load (16S rRNA gene copy number, total heterotrophs (HET), and ARB (faecal coliforms resistant to amoxicillin (FC/AMX) or ciprofloxacin (FC/CIP) up to 1–2 log immediately after the treatment. Both coagulants reduced the load of intl1, but in average, aluminium sulphate was able to decrease the content of the analysed ARGs (blaTEM and qnrS) to lower levels than tannin. Reactivation after storage was observed mainly in RTan. In these samples the load of the culturable populations and qnrS gene prevalence increased, sometimes to values higher than those found in the initial wastewater. Reactivation was also characterized by an increment in Gammaproteobacteria relative abundance in the bacterial community, although with distinct patterns for RTan and RAlu. Curvibacter, Undibacterium and Aquaspirillum were among the most abundant genera in RAlu and Aeromonas, Pseudomonas and Stenotrophomonas in RTan. These bacterial community shifts were in agreement with the variations in the culturable bacterial counts of HET for RTan and FC/CIP for RAlu. In summary, the overall performance of aluminium sulphate was better than that of tannins in the treatment of treated urban wastewater.
Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents
Publication . Biancullo, Francesco; Moreira, Nuno F. F.; Ribeiro, Ana R.; Manaia, Célia M.; Faria, Joaquim L.; Nunes, Olga C.; Castro-Silva, Sergio M.; Silva, Adrian M. R.
Secondary urban wastewater samples were spiked with azithromycin (AZT), trimethoprim (TMP), ofloxacin (OFL) and sulfamethoxazole (SMX) at 100 mu g L-1 to investigate the efficiency of a TiO2-photocatalytic treatment using UVA-LEDs. Different operating parameters were studied, such as the irradiation conditions, catalyst load and the use of methanol as carrier solvent and radical scavenger. The most efficient conditions to treat spiked urban wastewater (4 LEDs symmetrically distributed and 1.00 g L-1 of catalyst) were also assessed on the removal of the antibiotics at real concentrations, as well as on the inactivation and regrowth of bacteria after 3-day storage (total and resistant heterotrophs, Escherichia coli and enterococci). Clindamycin (CLI) was targeted when SMX was not detected. One-hour treatment was enough to reduce the analysed antibiotics to values below the detection limits and to decrease the bacterial load by 2 log-units. Bacterial regrowth was observed for total heterotrophs, after the storage of photocatalytic treated wastewater, to values close to pre-treatment. However, the antibiotic resistance percentage of such stored wastewater was always similar or lower than that of secondary urban wastewater. Thus, the potential of this process as part of the tertiary treatment is demonstrated, but conditions must be adjusted to minimize microbial regrowth.
Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater
Publication . Moreira, Nuno F. F.; Narciso-da-Rocha, Carlos; Pólo-Lopez, M. Immaculada; Pastrana-Martínez, Luisa M.; Faria, Joaquim L.; Manaia, Célia M.; Fernandez-Ibáñez, Pilar; Nunes, Olga C.; Silva, Adrian M. T.
Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H2O2, heterogeneous photocatalysis (with and/or without the addition of H2O2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO2-P25 and assisted with H2O2 (P25/H2O2) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to QUV < 40 kJ L 1). This performance was followed by the same process without H2O2, using TiO2-P25 or a composite material based on graphene oxide and TiO2. Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100mL 1) for all treatments employing H2O2, even upon storage of the treated wastewater for 3-days. Moreover, P25/H2O2 and solar-H2O2 were the most efficient processes in the reduction of the lysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO2-P25), blaCTX-M and blaTEM (using TiO2-P25 and TiO2-P25/H2O2). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria (Beta- and Gammaproteobacteria) were found after 3-days storage of treated wastewater than before its treatment. Members of the genera Pseudomonas, Rheinheimera and Methylotenera were among those with overgrowth.
Photocatalytic ozonation of urban wastewater and surface water using immobilized TiO2 with LEDs: Micropollutants, antibiotic resistance genes and estrogenic activity
Publication . Moreira, Nuno F.F.; Sousa, José M.; Macedo, Gonçalo; Ribeiro, Ana R.; Barreiros, Luisa; Pedrosa, Marta; Faria, Joaquim L.; Pereira, M. Fernando R.; Castro-Silva, Sérgio; Segundo, Marcela A.; Manaia, Célia M.; Nunes, Olga C.; Silva, Adrián M.T.
Photocatalytic ozonation was employed for the first time in continuous mode with TiO2-coated glass Raschig rings and light emitting diodes (LEDs) to treat urban wastewater as well as surface water collected from the supply area of a drinking water treatment plant (DWTP). Different levels of contamination and types of contaminants were considered in this work, including chemical priority substances (PSs) and contaminants of emerging concern (CECs), as well as potential human opportunistic antibiotic resistant bacteria and their genes (ARB&ARG). Photocatalytic ozonation was more effective than single ozonation (or even than TiO2 catalytic ozonation) in the degradation of typical reaction by-products (such as oxalic acid), and more effective than photocatalysis to remove the parent micropollutants determined in urban wastewater. In fact, only fluoxetine, clarithromycin, erythromycin and 17-alpha-ethinylestradiol (EE2) were detected after photocatalytic ozonation, by using solid-phase extraction (SPE) pre-concentration and LC-MS/MS analysis. In surface water, this treatment allowed the removal of all determined micropollutants to levels below the limit of detection (0.01-0.20 ng L(-1)). The efficiency of this process was then assessed based on the capacity to remove different groups of cultivable microorganisms and housekeeping (16S rRNA) and antibiotic resistance or related genes (intI1, blaTEM, qnrS, sul1). Photocatalytic ozonation was observed to efficiently remove microorganisms and ARGs. Although after storage total heterotrophic and ARB (to ciprofloxacin, gentamicin, meropenem), fungi, and the genes 16S rRNA and intI1, increased to values close to the pre-treatment levels, the ARGs (blaTEM, qnrS and sul1) were reduced to levels below/close to the quantification limit even after 3-days storage of treated surface water or wastewater. Yeast estrogen screen (YES), thiazolyl blue tetrazolium reduction (MTT) and lactate dehydrogenase (LDH) assays were also performed before and after photocatalytic ozonation to evaluate the potential estrogenic activity, the cellular metabolic activity and the cell viability. Compounds with estrogenic effects and significant differences concerning cell viability were not observed in any case. A slight cytotoxicity was only detected for Caco-2 and hCMEC/D3 cell lines after treatment of the urban wastewater, but not for L929 fibroblasts.
Continuous ozonation of urban wastewater: removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity
Publication . Iakovides, I. C.; Michael-Kordatou, I.; Moreira, N. F. F.; Ribeiro, A. R.; Fernandes, T.; Pereira, M. F. R.; Nunes, O. C.; Manaia, C. M.; Silva, A. M. T.; Fatta-Kassinos, D.
This work evaluated the removal of a mixture of eight antibiotics (i.e. ampicillin (AMP), azithromycin (AZM), erythromycin (ERY), clarithromycin (CIA), ofloxacin (OFL), sulfamethoxazole (SMX), trimethoprim (TMP) and tetracycline (TC)) from urban wastewater, by ozonation operated in continuous mode at different hydraulic retention times (HRTs) (i.e. 10, 20, 40 and 60 min) and specific ozone doses (i.e. 0.125, 0.25, 0.50 and 0.75 gO(3) gDOC(-1)). As expected, the efficiency of ozonation was highly ozone dose-and contact time-dependent. The removal of the parent compounds of the selected antibiotics to levels below their detection limits was achieved with HRT of 40 min and specific ozone dose of 0.125 gO(3) gDOC(-1). The effect of ozonation was also investigated at a microbiological and genomic level, by studying the efficiency of the process with respect to the inactivation of Escherichia coli and antibiotic-resistant E. coli, as well as to the reduction of the abundance of selected antibiotic resistance genes (ARG5). The inactivation of total cultivable E. coli was achieved under the experimental conditions of HRT 40 min and 0.25 gO(3) gDOC(-1), at which all antibiotic compounds were already degraded. The regrowth examinations revealed that higher ozone concentrations were required for the permanent inactivation of E. coli below the Limit of Quantification (

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

PD/BD/114318/2016

ID