Loading...
Research Project
Untitled
Funder
Authors
Publications
A combined physiological and biophysical approach to understand the ligand-dependent efficiency of 3-hydroxy-4-pyridinone Fe-chelates
Publication . Santos, Carla S.; Leite, Andreia; Vinhas, Sílvia; Ferreira, Sofia; Moniz, Tânia; Vasconcelos, Marta W.; Rangel, Maria da Conceição
Ligands of the 3‐hydroxy‐4‐pyridinone (3,4‐HPO) class were considered eligible to formulate new Fe fertilizers for Iron Deficiency Chlorosis (IDC). Soybean (Glycine max L.) plants grown in hydroponic conditions and supplemented with Fe‐chelate [Fe(mpp)3] were significantly greener, had increased biomass, and were able to translocate more iron from the roots to the shoots than those supplemented with an equal amount of the commercially available chelate [FeEDDHA]. To understand the influence of the structure of 3,4‐HPO ligand on the role of the Fe‐chelate to improve Fe‐uptake, we investigated and report here the effect of Fe‐chelates ([Fe(mpp)3], [Fe(dmpp)3], and [Fe(etpp)3]) in addressing IDC. Chlorosis development was assessed by measurement of morphological parameters, quantification of chlorophyll and Fe, and other micronutrient contents, as well as measurement of enzymatic activity (FCR) and gene expression (FRO2, IRT1, and Ferritin). All [Fe(3,4‐HPO)3] chelates were able to provide Fe to plants and prevent IDC but with a different efficiency depending on the ligand. We hypothesize that this may be related with the distinct physicochemical characteristics of ligands and complexes, namely, the diverse hydrophilic–lipophilic balance of the three chelates. To test the hypothesis, we performed an EPR biophysical study using liposomes prepared from a soybean (Glycine3 max L.) lipid extract and spin probes. The results showed that the most effective chelate [Fe(mpp)3] shows a preferential location close to the surface while the others prefer the hydrophobic region inside the bilayer.
Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry
Publication . Ribeiro, Ana Rita; Santos, Lúcia H. M. L. M.; Maia, Alexandra S.; Delerue-Matos, Cristina; Castro, Paula M. L.; Tiritan, Maria Elizabeth
The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.
Bacillus invictae sp. nov., isolated from a health product
Publication . Branquinho, Raquel; Sousa, Clara; Osório, Hugo; Meirinhos-Soares, Luís; Lopes, João; Carriço, João A.; Busse, Hans-Juergen; Abdulmawjood, Amir; Klein, Gunter; Kampfer, Peter; Pintado, Manuela E.; Peixe, Luísa V.
Brazilian fruit pulps as functional foods and additives: evaluation of bioactive compounds
Publication . Paz, Mário; Gúllon, Patricia; Barroso, M. Fátima; Carvalho, Ana P.; Domingues, Valentina F.; Gomes, Ana M.; Becker, Helena; Longhinotti, Elisane; Delerue-Matos, Cristina
Eight tropical fruit pulps from Brazil were simultaneously characterised in terms of their antioxidant and antimicrobial properties. Antioxidant activity was screened by DPPH radical scavenging activity (126-3987 mg TE/100 g DW) and ferric reduction activity power (368-20819 mg AAE/100 g DW), and complemented with total phenolic content (329-12466 mg GAE/100 g DW) and total flavonoid content measurements (46-672 mg EE/100 g DW), whereas antimicrobial activity was tested against the most frequently found food pathogens. Acerola and acai presented the highest values for the antioxidant-related measurements. Direct correlations between these measurements could be observed for some of the fruits. Tamarind exhibited the broadest antimicrobial potential, having revealed growth inhibition of Pseudomonas aeruginosa. Escherichia coli, Listeria monocytogenes, Salmonella sp. and Staphylococcus aureus. Acai and tamarind extracts presented an inverse relationship between antibacterial and antioxidant activities, and therefore, the antibacterial activity cannot be attributed (only) to phenolic compounds.
Increasing phenolic and aromatic compounds extraction and maximizing liking of lemon verbena (Aloysia triphylla) infusions through the optimization of steeping temperature and time
Publication . Rocha, C.; Coelho, M.; Lima, R. C.; Campos, F. M.; Pintado, M.; Cunha, L. M.
Herbal infusions are a new emerging trend among consumers, appearing in the market in many different forms. Due to intense competition, the commercial success of herbal infusions largely depends on flavour. The identification of the best combinations of steeping time and water temperature for the preparation of Aloysia triphylla infusions using a central composite design and response surface methodology was performed. The procedure aimed to maximize its antioxidant activity, phenolic and aromatic compounds, and consumers’ liking of the infusions. The antioxidant activity and phenolic content were evaluated using the 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation) method and the Folin–Ciocalteu procedure. The analysis of aromatic compounds was performed based on the method of terpenic compounds. Sensory evaluation encompassed overall liking using a 9-point hedonic scale. Antioxidant activity and extraction of most phenolic compounds was higher for longer steeping times and higher temperatures, with some presenting a contrasting effect due to degradation at higher temperatures for longer steeping times. Results for terpenic compounds showed similar contrasting patterns. Based on the quadratic response surface, it was possible to predict the maximum overall liking for lemon verbena infusions prepared by brewing for 6 min at 96 ℃. Under such conditions, extraction of bioactive compounds was kept at a high level, close to the maximum attainable, while reducing the extraction of bitter compounds. These results are considered of great importance for the development of premium infusions from organic lemon verbena leaves.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
COMPETE
Funding Award Number
PEst-C/EQB/LA0006/2013