Repository logo
 
Loading...
Project Logo
Research Project

Interdisciplinary Centre of Marine and Environmental Research

Authors

Publications

Glyphosate in portuguese adults – a pilot study
Publication . Nova, Paulo; Calheiros, Cristina S.C.; Silva, Margarida
Background: Glyphosate is a broad-spectrum biocide and the active ingredient in the most widely used herbicides worldwide. Since 2015, when the International Agency for Research on Cancer classified it as a Class 2A carcinogen, global interest in this chemical spiked particularly as regards exposure of the general population. Objective: An exploratory glyphosate exposure assessment was conducted among Portuguese adults. Methods: Self-selected participants provided first morning urine which was tested for glyphosate and its metabolite aminomethylphosphonic acid (AMPA) at two distinct periods of time, by two different laboratories using gas chromatography with tandem mass spectrometry (GC-MS-MS) and high performance liquid chromatography linked to triple quadrupole mass spectrometry (HPLC-MS/MS), respectively. Results: In the first round of testing 28% and 50% presented detectable levels of glyphosate and AMPA respectively, with median values of 0.25 and 0.16 μg/L. Systematically available internal dose values were 8.20E- 06 mg/Kg (glyphosate) and 5.04-05 mg/Kg (AMPA). In the second round 73% and 97% presented detectable levels of glyphosate and AMPA respectively with median values of 0.13 and 0.10 μg/L. Systematically available internal dose values were 4.00E-06 mg/Kg (glyphosate) and 3.00E-06 mg/Kg (AMPA). Conclusions: Glyphosate exposure was detected among Portuguese adults, with percentages of glyphosate and AMPA contaminated urine in both rounds of testing and above values from previous studies in other European countries. Systematically available internal doses values were below EFSA’s risk assessment values (ADI or AOEL), and as such, the concentration values measured in this study are not per se a human health problem. Even though there were study limitations, it is the first assessment in Portugal and contributes to the overall knowledge map of glyphosate exposure in Europe.
Use of technological processing of seaweed and microalgae as strategy to improve their apparent digestibility coefficients in European seabass (Dicentrarchus labrax) juveniles
Publication . Batista, Sónia; Pintado, Manuela; Marques, Alexandra; Abreu, Helena; Silva, Joana L; Jessen, Flemming; Valente, Luísa M.P.
Algae are natural sources of nutrients, but the presence of anti-nutritional factors often compromises nutrient apparent digestibility coefficients (ADCs) in several fish species. In this study, physical-mechanical and enzymatic technological processing was applie to two seaweeds (Gracilaria gracilis and Ulva rigida) and three microalgae (Nannochloropsis oceanica, Chlorella vulgaris, and Tetraselmis sp.) in order to evaluate its effectiveness in improving nutrient ADC values in diets for European seabass. A practical commercial-based diet was used as reference (REF) and experimental diets were prepared by replacing 30% of REF diet with each test alga used either intact or after processing. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fast performance liquid chromatography (FPLC) analyses revealed that enzymatic processing was more effective than the physical one in changing the protein and peptides composition, increasing the amount of low-molecular-weight compounds in seaweeds and N. oceanica microalgae. Protein digestibility was significantly affected by algae species and in the case of the microalgae by the technological process. Gracilaria gracilis is better digested than U. rigida and physical processing enhanced protein and energy ADC values. Nannochloropsis oceanica and C. vulgaris are better digested than Tetraselmis sp.; the highest protein and energy ADCs were observed in diets containing enzymatically processed N. oceanica (NAN-ENZ) and physically processed C. vulgaris (CHLO-PHY), followed by the diet with physically processed Tetraselmis sp. (TETR-PHY). Results clearly showed that it is possible to increase nutrient accessibility and digestibility of algae by fish, by selecting the most adequate method to disrupt the cell wall. Moreover, the physical-mechanical and enzymatic technological processes used in this study are scalable to the industrial level.
Physical processing or supplementation of feeds with phytogenic compounds, alginate oligosaccharide or nucleotides as methods to improve the utilization of Gracilaria gracilis by juvenile European seabass (Dicentrarchus labrax)
Publication . Valente, Luisa M.P.; Batista, Sónia; Ribeiro, Catarina; Pereira, Ricardo; Oliveira, Beatriz; Garrido, Inês; Baião, Luís F.; Tulli, Francesa; Messina, Maria; Pierre, Ronan; Abreu, Helena; Pintado, Manuela; Kiron, Viswanath
This study assessed both the effectiveness of a physical-mechanical rupture method and the ability of feed additives (phytogenic compounds, alginate oligosaccharide and nucleotides) to enhance the utilization of G. gracilis by European seabass. A commercial-based diet was used as control diet (CTRL) and compared with five isoproteic (53.5% Dry matter, DM) and isolipidic (14.9% DM) diets containing 8% of G. gracilis. This seaweed was either unprocessed (diet GRA) or subjected to physical processing (diet GRAP). The three additive-containing diets were formulated by supplementing the GRA diet with either 0.02% phytogenic compounds (PHY), 2.5% oligo-alginate (OAS) or 0.08% free nucleotides (NUC). Triplicate groups of nineteen fish (29.7 ± 0.02 g) were distributed by 50 L tanks (11.3 kg m−3) and fed the experimental diets to satiety during 106 days. By the end of the trial, growth performance and nutrient utilization (specific growth ratio, feed conversion ratio, apparent digestibility coefficients, nutrient balance, intestinal brush border membrane enzyme activities and plasma metabolic parameters), gut histomorphology, antioxidant and immunological status of fish were evaluated. The ability of fish to digest seaweed-rich diets was largely improved by the technological processing of G. gracilis, albeit nil effect on fish specific growth rate (1.0 in all groups). This major achievement was associated with increased ability of GRAP to digest protein (84 vs 68% in GRA) and energy (64 vs 38% in GRA). The use of feed additives in Gracilaria-rich diets was less efficacious in improving European sea bass nutrient and energy ADCs, but have still improved the overall digestibility of those diets. Fish fed alginate oligosaccharide was mainly associated with increased activity of anterior intestine enzymes, particularly intestinal alkaline phosphatase (IAP; 174.4 vs 104.7–120.6 μm min−1 g−1 in Gracilaria-rich diets). Moreover, the algae technological processing and both the nucleotides and the alginate oligosaccharide seem to have positively affected the intestinal villus width compared to the negative impact seen in fish fed GRA. The tested additives had limited impact on oxidative stress, although glutathione peroxidase (GPx; 2.1 μmol min−1 mg protein−1) and catalase (CAT; 35 μmol min−1 mg protein−1) activities were lowest in fish fed NUC and PHY, respectively. It can be concluded that the physical processing of Gracilaria sp. or the addition of either oligo-alginate or nucleotides can effectively increase the nutritional value of this seaweed for European seabass diets.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/04423/2020

ID