Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Synthesis and characterization of a 3-hydroxy-4-pyridinone chelator functionalized with a polyethylene glycol (PEG) chain aimed at sequential injection determination of iron in natural waters
Publication . Mesquita, Raquel; Moniz, Tânia; Miranda, Joana L. A.; Gomes, Vânia; Silva, André M. N.; Rodriguez-Borges, J. E.; Rangel, António O. S. S.; Rangel, Maria
The synthesis of a highly water soluble 3-hydroxy-4-pyridinone ligand, functionalized with a hydrophilic ethylene glycol chain (PEG-HPO), was successfully achieved and is reported together with that of its iron (III) complex. The improved hydrophilicity of both the PEGylated 3,4-HPO ligand and its iron(III) complex were fully investigated in an analytical application and, the new chelator is proposed for the spectrophotometric sequential injection determination of iron in waters. The new ligand provided better sensitivity and a lower LOD for iron determination than that obtained for N-alkyl-3-hydroxy-4-pyridinone ligands. The developed sequential injection method presents a dynamic working range of 0.10-1.00 mg Fell. with a LOD of 48 mu g/L. Due to the use of a sequential injection system, the overall effluent production was <2 mL corresponding to the consumption of 44 mu g of PEG-HPO, 0.71 mg of NaHCO3, 0.92 mg of HNO3 and 500 mu L of sample. Two reference samples were assessed for accuracy studies and a relative deviation <5% was obtained; eight waters samples were analyzed and the results compared with the reference procedure, and no statistical difference was observed for the two sets of results.
Screening of cadmium and lead in potentially contaminated waters using a spectrophotometric sequential injection lab-on-valve methodology
Publication . Santos, Inês C.; Mesquita, Raquel B. R.; Rangel, António O. S. S.
The present work describes the development of a µSI-LOV method for the simultaneous screening of cadmium and lead in potentially contaminated water samples. To attain the biparametric determination, dithizone was chosen as the spectrophotometric reagent as it forms a colored complex with both metal ions, at different pH conditions. The cadmium determination was attained in strong alkaline conditions (pH≈12); the lead determination was calculated by the difference with the determination of both metals in mild alkaline conditions (pH≈8). The colored complex was measured at 550 nm and the method presented a LOD of 34 μg L−1 for cadmium and 56 μg L−1 for lead, with a sample consumption of 20 µL per assay and a determination rate of 55 h−1. The results obtained were in agreement with those obtained by FAAS. The developed method was efficiently applied to the screening of cadmium and lead in marine port waters.
Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility
Publication . Calheiros, Cristina S. C.; Bessa, Vânia S.; Mesquita, Raquel B. R.; Brix, Hans; Rangel, António O. S. S.; Castro, Paula M. L.
Sewage management in remote rural and mountain areas constitutes a challenge because of the lack of adequate infrastructure and economic capability. Tourism facilities, in particular, possess a special challenge because of huge variability in sewage production and composition as a consequence of variations in number of guests and their activities. Constructed wetlands (CWs) are recognized as a robust and economical ecotechnology capable of meeting these challenges. A horizontal subsurface flow CW system was established at a guest house located in a rural and mountain area of Portugal. The substrate of the bed was an expanded clay substrate, and the system was planted with a polyculture of ornamental flowering plants (Canna flaccida, Zantedeschia aethiopica, Canna indica, Agapanthus africanus and Watsonia borbonica). The load and composition of sewage varied significantly seasonally (17–579 kg COD ha−1 d−1), but removal efficiencies of BOD and COD were generally high (>90%) and independent of the loading conditions. The system also reduced PO43− (up to 92%), NH4+ (up to 84%) and total coliform bacteria (up to 99%). The ornamental polyculture provided an aesthetic pleasing system with different appearance during the seasons. Of the five species tested, four grew well (C. flaccida, C. indica, Z. aethiopica and W. borbonica), whereas A. africanus was outcompeted. The system owner cut flowers from the CW system and used them for decorations at the guest house. It was demonstrated that CW systems planted with a polyculture of ornamental plant species, besides the water treatment function, possess several additional benefits including aesthetics and biodiversity enhancement.
Iron speciation by microsequential injection solid phase spectrometry using 3-hydroxy-1(H)-2-methyl-4-pyridinone as chromogenic reagent
Publication . Suárez, Ruth; Mesquita, Raquel B. R.; Rangel, Maria; Cerdà, Víctor; Rangel, António O.S.S.
The speciation of iron using the newly synthesized 3-hydroxy-1(H)-2-methyl-4-pyridinone by solid phase spectrophotometry in a microsequential injection lab-on-valve (µSI-LOV-SPS) methodology is described. Iron was retained in a reusable column, Nitrilotriacetic Acid Superflow (NTA) resin, and the ligand was used as both chromogenic and eluting reagent. This approach, analyte retention and matrix removal, enabled the assessment of iron (III) and total iron content in fresh waters and high salinity coastal waters with direct sample introduction, in the range of 20.0–100 µg/L. with a LOD of 9 µg/L. The overall effluent production was 2 mL, corresponding to the consumption of 0.48 µg of 2-metil-3-hydroxy-4-pyridinone, 0.34 mg of NaHCO3, 16 mg of HNO3, 4.4 µg H2O2 and 400 µL of sample. Four reference samples were analyzed and a relative deviation<10% was obtained; furthermore, several bathing waters (♯13) were analyzed using the developed method and the results were comparable to those obtained by atomic absorption spectrophotometry (relative deviations<6%).
Iodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method
Publication . Santos, Inês C.; Mesquita, Raquel B. R.; Bordalo, Adriano A.; Rangel, António O. S. S.
The present work describes the development of a sequential injection standard addition method for iodine speciation in bathing waters and seaweeds extracts without prior sample treatment. Iodine speciation was obtained by assessing the iodide and iodate content, the two inorganic forms of iodine in waters. For the determination of iodide, an iodide ion selective electrode (ISE) was used. The indirect determination of iodate was based on the spectrophotometric determination of nitrite (Griess reaction). For the iodate measurement, a mixing chamber was employed (flow batch approach) to explore the inherent efficient mixing, essential for the indirect determination of iodate. The application of the standard addition method enabled detection limits of 0.14 µM for iodide and 0.02 µM for iodate, together with the direct introduction of the target water samples, coastal and inland bathing waters. The results obtained were in agreement with those obtained by ICP-MS and a colorimetric reference procedure. Recovery tests also confirmed the accuracy of the developed method which was effectively applied to bathing waters and seaweed extracts.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BPD/41859/2007

ID