Loading...
Research Project
Untitled
Funder
Authors
Publications
Optimisation and validation of a HS-SPME-GC-IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habits
Publication . Calejo, Isabel; Moreira, Nathalie; Araújo, Ana Margarida; Carvalho, Márcia; Bastos, Maria de Lourdes; Pinho, Paula Guedes de
A new and simple analytical approach consisting of an automated headspace solid-phase microextraction (HS-SPME) sampler coupled to gas chromatography-ion trap/mass spectrometry detection (GC–IT/MS) with a prior derivatization step with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was developed to detect volatile carbonyl metabolites with low molecular weights in human urine. A central composite design (CCD) was used to optimise the PFBHA concentration and extraction conditions that affect the efficiency of the SPME procedure. With a sample volume of 1 mL, optimal conditions were achieved by adding 300 mg/L of PFBHA and allowing the sample to equilibrate for 6 min at 62 °C and then extracting the samples for 51 min at the same temperature, using a divinylbenzene/polydimethylsiloxane (DVB/PDMS) fibre. The method allowed the simultaneous identification and quantification of 44 carbonyl compounds consisting of aldehydes, dialdehydes, heterocyclic aldehydes and ketones. The method was validated with regards to the linearity, inter- and intra-day precision and accuracy. The detection limits ranged from 0.009 to 0.942 ng/mL, except for 4-hydroxy-2-nonenal (15 ng/mL), and the quantification limits varied from 0.029 to 1.66 ng/mL, except for butanal (2.78 ng/mL), 2-butanone (2.67 ng/mL), 4-heptanone (3.14 ng/mL) and 4-hydroxy-2-nonenal (50.0 ng/mL). The method accuracy was satisfactory, with recoveries ranging from 90 to 107%. The proof of applicability of the methodology was performed in a pilot target analysis of urine samples obtained from 18 healthy smokers and 18 healthy non-smokers (control group). Chemometric supervised analysis was performed using the volatile patterns acquired for these samples and clearly showed the potential of the volatile carbonyl profiles to discriminate urine from smoker and non-smoker subjects. 5-Methyl-2-furfural (p<0.0001), 2-methylpropanal, nonanal and 2-methylbutanal (p<0.05) were identified as potentially useful biomarkers to identify smoking habits.
Chemiomics: network reconstruction and kinetics of Port Wine aging
Publication . Monforte, Ana Rita; Jacobson, Dan; Ferreira, A. C. Silva
Network reconstruction (NR) has proven to be useful in the detection and visualization of relationships among the compounds present in a Port wine aging data set. This view of the data provides a considerable amount of information with which to understand the kinetic contexts of the molecules represented by peaks in each chromatogram. The aim of this study was to use NR together with the determination of kinetic parameters to extract more information about the mechanisms involved in Port wine aging. The volatile compounds present in samples of Port wines spanning 128 years in age were measured with the use of GC-MS. After chromatogram alignment, a peak matrix was created, and all peak vectors were compared to one another to determine their Pearson correlations over time. A correlation network was created and filtered on the basis of the resulting correlation values. Some nodes in the network were further studied in experiments on Port wines stored under different conditions of oxygen and temperature in order to determine their kinetic parameters. The resulting network can be divided into three main branches. The first branch is related to compounds that do not directly correlate to age, the second branch contains compounds affected by temperature, and the third branch contains compounds associated with oxygen. Compounds clustered in the same branch of the network have similar expression patterns over time as well as the same kinetic order, thus are likely to be dependent on the same technological parameters. Network construction and visualization provides more information with which to understand the probable kinetic contexts of the molecules represented by peaks in each chromatogram. The approach described here is a powerful tool for the study of mechanisms and kinetics in complex systems and should aid in the understanding and monitoring of wine quality.
Monitoring alcoholic fermentation: an untargeted approach
Publication . Ferreira, António César Silva; Monforte, Ana Rita; Teixeira, Carla Silva; Martins, Rosa; Fairbaim, Samantha; Bauer, Florian F.
This work describes the utility and efficiency of a metabolic profiling pipeline that relies on an unsupervised and untargeted approach applied to a HS-SPME/GC-MS data. This noninvasive and high throughput methodology enables "real time" monitoring of the metabolic changes inherent to the biochemical dynamics of a perturbed complex biological system and the extraction of molecular candidates that are latter validated on its biochemical context. To evaluate the efficiency of the pipeline five different fermentations, carried on a synthetic media and whose perturbation was the nitrogen source, were performed in 5 and 500 mL. The smaller volume fermentations were monitored online by HS-SPME/GC-MS, allowing to obtain metabolic profiles and molecular candidates time expression. Nontarget analysis was applied using MS data in two ways: (i) one dimension (1D), where the total ion chromatogram per sample was used, (ii) two dimensions (2D), where the integrity time vs m/z per sample was used. Results indicate that the 2D procedure captured the relevant information more efficiently than the 1D. It was also seen that although there were differences in the fermentation performance in different scales, the metabolic pathways responsible for production of metabolites that impact the quality of the volatile fraction was unaffected, so the proposed pipeline is suitable for the study of different fermentation systems that can undergo subsequent sensory validation on a larger scale.
Port wine oxidation management: a multiparametric kinetic
Publication . Martins, Rui Costa; Monforte, Ana Rita; Ferreira, António Silva
Port wine is a flagship fortified wine of Portugal, which undergoes a particularly long aging period, developing a dynamic sensory profile over time, responsible for several wine categories, which is dependent upon the type of aging (bottle or barrel). Therefore, the quality of the product is dependent upon the chemical mechanisms occurring during the aging process, such as oxidation or Maillard reactions. To attain the desired quality management, it si necessary to understand how technological parameters, such as temperatures or oxygen exposure, affect the kinetics of the formation of key odorants, such as sotolon. There is a lack of information about hte impact of the storage conditions (oxygen and temperature) on Port wine quality. In this study, the effect of these two parameters were investigated to increase the knowledge database concerning aging management of Port wines. It was found that sotolon formation is highly dependent upon oxygen and temperature. There is however a synergistic effect between these two parameters that could significantly increase the concentration. The kinetic parameters of oxygen, sotolon, and other compounds related to Port aging (cis- and trans-5-hydroxy-2-methyl-1,3-dioxan, 2-furfural, 5-hydroy-methyl-furfural, and 5-methyl-furfural) are also reported. Kinetic models with Monte Carlo simulations, where the oxygen permeability dispersion and temperature are the parameters under evaluation, were applied. On the basis of the modeling predictions, it would seem that the temperature of a cellar would have a more significant impact on the Port wines stored in containers where the oxygen intake is higher (barrels) when compared to containers with low oxygen permeability (bottles using cork stoppers).
New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking
Publication . Franco-Duarte, Ricardo; Umek, Lan; Mendes, Inês; Castro, Cristiana C.; Fonseca, Nuno; Martins, Rosa; Ferreira, António César Silva; Sampaio, Paula; Pais, Célia; Schuller, Dorit
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds
are formed. The objective of the present work was to adapt computational approaches to analyze
pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and
genetic characterization together with individual must fermentations were performed, and metabolites
relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates
system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of mostcorrelated
features of noteworthy biological importance. The present method allowed, as a breakthrough,
to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties
in comparing different types of data. Therefore, the proposed computational approach revealed as
successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative
conditions. This will allow the identification of combined relevant features with application in
selection of good winemaking strains.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/AGR-ALI/121062/2010