Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Enrichment of bacterial strains for the biodegradation of diclofenac and carbamazepine from activated sludge
Publication . Bessa, V. S.; Moreira, I. S.; Tiritan, M. E.; Castro, P. M. L.
Carbamazepine and diclofenac have been pointed out as important markers for environmental pollution by pharmaceuticals. This study reports on the isolation of bacterial strains capable to degrade these micropollutants from activated sludge of a municipal wastewater treatment plant (WWTP). After selective enrichments, one strain able to degrade diclofenac and two strains able to degrade carbamazepine were isolated. The strains were identified by 16S rRNA gene sequencing. Strain Brevibacterium sp. D4 was able to biodegrade 35% of 10 mg L−1 of diclofenac as a sole carbon source; periodic feeding with acetate as a supplementary carbon source resulted in enhancing biodegradation to levels up to 90%, with a concomitant increase of the biodegradation rate. Strains Starkeya sp. C11 and Rhizobium sp. C12 were able to biodegrade 30% of 10 mg L−1 of carbamazepine as a sole carbon source; supplementation with acetate did not improve the biodegradation of carbamazepine by these strains. The activated sludge harboured bacteria capable to degrade the two top priority environmental contaminants and may be potentially useful for biotechnological applications.
Carbamazepine is degraded by the bacterial strain Labrys portucalensis F11
Publication . Bessa, Vânia S.; Moreira, Irina S.; Murgolo, Sapia; Mascolo, Giuseppe; Castro, Paula M. L.
The occurrence of pharmaceuticals in the environment is a topic of concern. Carbamazepine (CBZ) is a widespread antiepileptic drug and due to its physical-chemical characteristics minimal removal is achieved in conventional water treatments, and thus has been suggested as a molecular marker of wastewater contamination in surface water and groundwater. The present study reports the biotransformation of CBZ by the bacterial strain Labrys portucalensis F11. When supplied as a sole carbon source, a 95.4% biotransformation of 42.69 μM CBZ was achieved in 30 days. In co-metabolism with acetate, complete biotransformation was attained at a faster rate. Following a target approach, the detection and identification of 14 intermediary metabolites was achieved through UPLC-QTOF/MS/MS. Biotransformation of CBZ by the bacterial strain is mostly based on oxidation, loss of -CHNO group and ketone formation reactions; a biotransformation pathway with two routes is proposed. The toxicity of untreated and treated CBZ solutions was assessed using Vibrio Fischeri and Lepidium sativum acute toxicity tests and Toxi-Chromo Test. The presence of CBZ and/or its degradations products in solution resulted in moderate toxic effect on Vibrio Fischeri, whereas the other organisms were not affected. To the best of our knowledge this is the first report that proposes the metabolic degradation pathway of CBZ by a single bacterial strain.
Biodegradation of diclofenac by the bacterial strain labrys portucalensis Fl 1
Publication . Moreira, Irina S.; Bessa, Vânia S.; Murgolo, Sapia; Piccirillo, Clara; Mascolo, Giuseppe; Castro, Paula M.L.
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7–34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment.
Performance of an aerobic granular sequencing batch reactor fed with wastewaters contaminated with Zn2+
Publication . Marques, Ana P. G. C.; Duque, Anouk F.; Bessa, Vânia S.; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Castro, Paula M. L.
The main aim of this study was to investigate the performance of an aerobic granular sludge sequencing batch reactor (AGS-SBR) receiving water streams supplied with different loads of Zn2+ (50 and 100 mg L-1) during an operation of 866 cycles (ca. 109 days). When the metal was not fed, chemical oxygen demand (COD), PO43- and NH4+ were efficiently removed, with efficiencies of 56, 23 and 72% respectively. DGGE profiles showed that Zn2+ supply negatively affected the bacterial diversity and community structure of the granules. Consequently, the shock loadings with Zn2+, particularly at the higher levels (100 mg L-1), affected the nutrient removal in the AGS-SBR, although the reactor still generally complied with admissible legal values concerning organic matter, nitrogen and Zn. Simultaneous removal of PO43- and TSS in such conditions needs further refining but the application of aerobic granular SBR in the treatment of Zn2+ contaminated wastewaters seems viable.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BD/90146/2012

ID