Loading...
Research Project
Untitled
Funder
Authors
Publications
Characterization of the bacterial communities of aerobic granules in a 2-fluorophenol degrading process
Publication . Duque, Anouk F.; Bessa, Vânia S.; Castro, Paula M. L.
Aerobic granular sludge constitutes a novel technology for wastewater treatment. This study focused on the effect of 2-fluorophenol (2-FP) shock loadings on the microbial community diversity present in aerobic granules before and after inoculation with a bacterial strain able to degrade 2-FP, Rhodococcus sp. strain FP1. After bioaugmentation, apart from strain FP1, five culturable bacteria were isolated from the 2-FP degrading granules, belonging to the following genera: Serratia, Chryseobacterium, Xanthomonas, Pimelobacter and Rhodococcus. The latter two isolates are able to degrade 2-FP. Changes in the aerobic granules’ bacterial communities related to 2-FP shock loadings were examined using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene pool. Numerical analysis of the DGGE profiles showed high diversity with an even distribution of species. Based on cluster analysis of the DGGE profiles, the bacterial communities present in the aerobic granules changes were related to the sampling time and the 2-FP concentration fed.
Performance of an aerobic granular sequencing batch reactor fed with wastewaters contaminated with Zn2+
Publication . Marques, Ana P. G. C.; Duque, Anouk F.; Bessa, Vânia S.; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Castro, Paula M. L.
The main aim of this study was to investigate the performance of an aerobic granular sludge sequencing batch reactor (AGS-SBR) receiving water streams supplied with different loads of Zn2+ (50 and 100 mg L-1) during an operation of 866 cycles (ca. 109 days). When the metal was not fed, chemical oxygen demand (COD), PO43- and NH4+ were efficiently removed, with efficiencies of 56, 23 and 72% respectively. DGGE profiles showed that Zn2+ supply negatively affected the bacterial diversity and community structure of the granules. Consequently, the shock loadings with Zn2+, particularly at the higher levels (100 mg L-1), affected the nutrient removal in the AGS-SBR, although the reactor still generally complied with admissible legal values concerning organic matter, nitrogen and Zn. Simultaneous removal of PO43- and TSS in such conditions needs further refining but the application of aerobic granular SBR in the treatment of Zn2+ contaminated wastewaters seems viable.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
SFRH
Funding Award Number
SFRH/BPD/88705/2012