Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Tackling antibiotic resistance: the environmental frameworkPublication . Berendonk, Thomas U.; Manaia, Célia M.; Merlin, Christophe; Fatta‑Kassinos, Despo; Cytryn, Eddie; Walsh, Fiona; Bürgmann, Helmut; Sørum, Henning; Norström, Madelaine; Pons, Marie-Noëlle; Kreuzinger, Norbert; Huovinen, Pentti; Stefani, Stefania; Schwartz, Thomas; Kisand, Veljo; Baquero, Fernando; Martinez, José LuisAntibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
- Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalencePublication . Pärnänen, Katariina M. M.; Narciso-da-Rocha, Carlos; Kneis, David; Berendonk, Thomas U.; Cacace, Damiano; Do, Thi Thuy; Elpers, Christian; Fatta-Kassinos, Despo; Henriques, Isabel; Jaeger, Thomas; Karkman, Antti; Martinez, Jose Luis; Michael, Stella G.; Michael-Kordatou, Irene; O’Sullivan, Kristin; Rodriguez-Mozaz, Sara; Schwartz, Thomas; Sheng, Hongjie; Sørum, Henning; Stedtfeld, Robert D.; Tiedje, James M.; Giustina, Saulo Varela Della; Walsh, Fiona; Vaz-Moreira, Ivone; Virta, Marko; Manaia, Célia M.Integrated antibiotic resistance (AR) surveillance is one of the objectives of the World Health Organization global action plan on antimicrobial resistance. Urban wastewater treatment plants (UWTPs) are among the most important receptors and sources of environmental AR. On the basis of the consistent observation of an increasing north-to-south clinical AR prevalence in Europe, this study compared the influent and final effluent of 12 UWTPs located in seven countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway). Using highly parallel quantitative polymerase chain reaction, we analyzed 229 resistance genes and 25 mobile genetic elements. This first trans-Europe surveillance showed that UWTP AR profiles mirror the AR gradient observed in clinics. Antibiotic use, environmental temperature, and UWTP size were important factors related with resistance persistence and spread in the environment. These results highlight the need to implement regular surveillance and control measures, which may need to be appropriate for the geographic regions.
- Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plantPublication . Narciso-da-Rocha, Carlos; Rocha, Jaqueline; Vaz-Moreira, Ivone; Lira, Felipe; Tamames, Javier; Henriques, Isabel; Martinez, Jose Luis; Manaia, Célia M.Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, blaCTX-M, blaOXA-A, blaTEM, blaSHV, sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control.