Repository logo
 
Loading...
Profile Picture
Person

Martinez, Jose Luis

Search Results

Now showing 1 - 2 of 2
  • Tackling antibiotic resistance: the environmental framework
    Publication . Berendonk, Thomas U.; Manaia, Célia M.; Merlin, Christophe; Fatta‑Kassinos, Despo; Cytryn, Eddie; Walsh, Fiona; Bürgmann, Helmut; Sørum, Henning; Norström, Madelaine; Pons, Marie-Noëlle; Kreuzinger, Norbert; Huovinen, Pentti; Stefani, Stefania; Schwartz, Thomas; Kisand, Veljo; Baquero, Fernando; Martinez, José Luis
    Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
  • Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence
    Publication . Pärnänen, Katariina M. M.; Narciso-da-Rocha, Carlos; Kneis, David; Berendonk, Thomas U.; Cacace, Damiano; Do, Thi Thuy; Elpers, Christian; Fatta-Kassinos, Despo; Henriques, Isabel; Jaeger, Thomas; Karkman, Antti; Martinez, Jose Luis; Michael, Stella G.; Michael-Kordatou, Irene; O’Sullivan, Kristin; Rodriguez-Mozaz, Sara; Schwartz, Thomas; Sheng, Hongjie; Sørum, Henning; Stedtfeld, Robert D.; Tiedje, James M.; Giustina, Saulo Varela Della; Walsh, Fiona; Vaz-Moreira, Ivone; Virta, Marko; Manaia, Célia M.
    Integrated antibiotic resistance (AR) surveillance is one of the objectives of the World Health Organization global action plan on antimicrobial resistance. Urban wastewater treatment plants (UWTPs) are among the most important receptors and sources of environmental AR. On the basis of the consistent observation of an increasing north-to-south clinical AR prevalence in Europe, this study compared the influent and final effluent of 12 UWTPs located in seven countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway). Using highly parallel quantitative polymerase chain reaction, we analyzed 229 resistance genes and 25 mobile genetic elements. This first trans-Europe surveillance showed that UWTP AR profiles mirror the AR gradient observed in clinics. Antibiotic use, environmental temperature, and UWTP size were important factors related with resistance persistence and spread in the environment. These results highlight the need to implement regular surveillance and control measures, which may need to be appropriate for the geographic regions.