Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Effect of γ-aminobutyric acid (GABA) on the metabolome of two strains of Lasiodiplodia theobromae isolated from grapevinePublication . Salvatore, Maria Michela; Félix, Carna; Lima, Fernanda; Ferreira, Vanessa; Duarte, Ana Sofia; Salvatore, Francesco; Alves, Artur; Esteves, Ana Cristina; Andolfi, AnnaThe effect of γ-aminobutyric acid (GABA) on the metabolome of two strains of Lasiodiplodia theobromae isolated from grapevine that hold a different degree of virulence to the host plant (LA-SOL3 (more virulent), LA-SV1 (less virulent)) was investigated. The culture filtrates and crude extracts from the two strains grown in the presence and absence of 10 mM of GABA were tested for phytotoxicity on tomato plant cuttings and leaves, respectively. Considering the opportunistic nature of this fungus for humans, crude extracts were also tested for cytotoxicity on mammalian cell lines. We found that culture filtrates and crude extracts have a decreased toxicity in the presence of GABA. Metabolomic analysis, conducted on both strains at both growth conditions, revealed the production of several compounds, such as indole-3-carboxylic acid (ICA, which is the main compound produced by L. theobromae), 3-indolecarboxyaldehyde, (3R,4S)-botryodiplodin, (R)-mellein. Finally, data demonstrate that GABA both induces a decrease in the amount of ICA, and a diversification of the metabolites produced by L. theobromae.
- Dual RNA sequencing of vitis vinifera during lasiodiplodia theobromae infection unveils host–pathogen interactionsPublication . Gonçalves, Micael F. M.; Nunes, Rui B.; Tilleman, Laurentijn; Peer, Yves Van De; Deforce, Dieter; Nieuwerburgh, Filip Van; Esteves, Ana C.; Alves, ArturLasiodiplodia theobromae is one of the most aggressive agents of the grapevine trunk disease Botryosphaeria dieback. Through a dual RNA-sequencing approach, this study aimed to give a broader perspective on the infection strategy deployed by L. theobromae, while understanding grapevine response. Approximately 0.05% and 90% of the reads were mapped to the genomes of L. theobromae and Vitis vinifera, respectively. Over 2500 genes were significantly differentially expressed in infected plants after 10 dpi, many of which are involved in the inducible defense mechanisms of grapevines. Gene expression analysis showed changes in the fungal metabolism of phenolic compounds, carbohydrate metabolism, transmembrane transport, and toxin synthesis. These functions are related to the pathogenicity mechanisms involved in plant cell wall degradation and fungal defense against antimicrobial substances produced by the host. Genes encoding for the degradation of plant phenylpropanoid precursors were up-regulated, suggesting that the fungus could evade the host defense response using the phenylpropanoid pathway. The up-regulation of many distinct components of the phenylpropanoid pathway in plants supports this hypothesis. Moreover, genes related to phytoalexin biosynthesis, hormone metabolism, cell wall modification enzymes, and pathogenesis-related proteins seem to be involved in the host responses observed. This study provides additional insights into the molecular mechanisms of L. theobromae and V. vinifera interactions.